A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第6章课程讲义下载(PDF)
Summary
- Gaussian elimination consists of two steps:
- Forward Elimination of Unknowns
In this step, the unknown is eliminated in each equation starting with the first equation. This way, the equations are reduced to one equation and one unknown in each equation. - Back Substitution
In this step, starting from the last equation, each of the unknowns is found.
- Forward Elimination of Unknowns
- More about determinant
- Let $[A]$ be a $n\times n$ matrix. Then if $[B]$ is a $n\times n$ matrix that results from adding or subtracting a multiple of one row (column) to another row (column), then $\det(A) = \det(B)$.
- Let $[A]$ be a $n\times n$ matrix that is upper triangular, lower triangular or diagonal, then $$\det(A) = a_{11}\times a_{22}\times\cdots\times a_{nn} = \prod_{i=1}^{n}a_{ii}$$ This implies that if we apply the forward elimination steps of Gaussian elimination method, the determinant of the matrix stays the same according to the previous result. Then since at the end of the forward elimination steps, the resulting matrix is upper triangular, the determinant will be given by the above result.
Selected Problems
1. Using Gaussian elimination to solve $$\begin{cases}4x_1+x_2-x_3=-2\\ 5x_1+x_2+2x_3=4\\ 6x_1+x_2+x_3=6\end{cases}$$
Solution:
Forward elimination: $$\begin{bmatrix}4& 1& -1& -2\\ 5& 1& 2& 4\\ 6& 1& 1& 6\end{bmatrix}\Rightarrow \begin{cases} R_2-{5\over4}R_1\\ R_3-{3\over2}R_1\end{cases}\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& -{1\over2}& {5\over2}& 9\end{bmatrix}$$ $$\Rightarrow R_3-2R_2\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& 0& -4& -4\end{bmatrix}$$ Back substitution: $$\begin{cases}-4x_3=-4\\ -{1\over4}x_2+{13\over4}x_3={13\over2}\\ 4x_1+x_2-x_3=-2\end{cases} \Rightarrow \begin{cases}x_3=1\\ -{1\over4}x_2+{13\over4}={13\over2}\\ 4x_1+x_2-1=-2\end{cases}$$ $$\Rightarrow \begin{cases}x_3=1\\ x_2 = -13\\ 4x_1-13=-1 \end{cases}\Rightarrow \begin{cases}x_1 = 3\\ x_2=-13\\ x_3=1 \end{cases}$$
2. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}$$
Solution:
Forward elimination $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}\Rightarrow\begin{cases}R_2 - {64\over25}R_1\\ R_3-{144\over25}R_1\end{cases} \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& -{84\over5}& -{119\over25} \end{bmatrix}$$ $$\Rightarrow R_3-{7\over2}R_2 \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& 0 & {7\over10} \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 25\times(-{24\over5})\times{7\over10}=-84 $$
3. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$
Solution:
Forward elimination $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5 \end{bmatrix}\Rightarrow\begin{cases}R_2 + {3\over 10}R_1\\ R_3-{1\over2}R_1\end{cases} \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& {5\over2}& 5 \end{bmatrix}$$ $$\Rightarrow R_3+2500R_2 \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& 0 & 15005 \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 10 \times(-{1\over1000})\times15005=-150.05$$
4. Using Gaussian elimination to solve $$\begin{cases}3x_1-x_2 - 5x_3 = 9\\ x_2-10x_3=0\\ -2x_1+x_2=-6\end{cases}$$
Solution:
Forward elimination: $$\begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ -2& 1& 0& -6\end{bmatrix}\Rightarrow R_3+{2\over3}R_1 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& {1\over3}& -{10\over3}& 0\end{bmatrix}$$ $$\Rightarrow R_3-{1\over3}R_2 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& 0 & 0 & 0\end{bmatrix}$$ Back substitution: $$\begin{cases}x_2-10x_3=0\\ 3x_1-x_2-5x_3=9\end{cases} \Rightarrow \begin{cases}x_2 = 10x_3\\ 3x_1-15x_3 = 9\end{cases} \Rightarrow \begin{cases}x_1 = 5x_3+3\\ x_2 = 10x_3\end{cases}$$ where $x_3$ is arbitrary.
A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination的更多相关文章
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- 利用writing-mode实现元素的垂直居中
writing-mode是CSS3的新特性之一,使用场景不是很多.这个属性主要是改变文档流的显示方式.具体的介绍参考这篇文章:http://www.zhangxinxu.com/wordpress/2 ...
- swift——启动页国际化:一步一步动态加载启动页图片,启动的时候加载文字
由于公司的需求,要求做一个国际化的启动页,因为app我也弄国际化了,就剩下启动页国际化未完成,百度了呵谷歌了好多答案都不尽如人意,最后也是看见同事完成,我也问了具体的做法,决定分享给需要的人,免得和我 ...
- ios蓝牙开发(五)BabyBluetooth蓝牙库介绍
BabyBluetooth 是一个最简单易用的蓝牙库,基于CoreBluetooth的封装,并兼容ios和mac osx. 特色: 基于原生CoreBluetooth框架封装的轻量级的开源库,可以帮你 ...
- WPF下制作的简单瀑布流效果
最近又在搞点小东西,美化界面的时候发现瀑布流效果比较不错.顺便就搬到了WPF,下面是界面 我对WEB前端不熟,JS和CSS怎么实现的,我没去研究过,这里就说下WPF的实现思路,相当简单. 1.最重要的 ...
- requirejs:性能优化-及早并行加载
为了提高页面的性能,通常情况下,我们希望资源尽可能地早地并行加载.这里有两个要点,首先是尽早,其次是并行. 通过data-main方式加载要尽可能地避免,因为它让requirejs.业务代码不必要地串 ...
- JavaScript学习笔记-简单的倒计时跳转页面
<!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- 一步一步教你elasticsearch在windows下的安装
首先下载最新的elasticsearch安装版本:elasticsearch下载.下载最新的elasticsearch 0.90.1版本.下载完成后.解压缩在安装目录.在cmd命令行进入安装目录,再进 ...
- [转]扩展RBAC用户角色权限设计方案
原文地址:http://www.iteye.com/topic/930648 RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联.简单地 ...
- [转]java反射机制
原文地址:http://www.cnblogs.com/jqyp/archive/2012/03/29/2423112.html 一.什么是反射机制 简单的来说,反射机制指的是程序在运 ...
- iOS开发小技巧--自定义带有占位文字的TextView(两种方式)
自定义控件注意或框架注意:自己暴露在外面的属性,一定要重写setter,保证外界与内部的交互性 一.方案一:通过drawRect:方法将文字画到textView中,监听文字改变用的是通知中心(代理也可 ...