Going from u to v or from v to u?
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 16486   Accepted: 4386

Description

In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?

Input

The first line contains a single integer T, the number of test cases. And followed T cases.

The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.

Output

The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.

Sample Input

1
3 3
1 2
2 3
3 1

Sample Output

Yes
     
题意:
有一张有向图,然后问对于任意的2个点,是否存在x可以到达y,或者y能够到达x。
 
思路:
可以先强连通缩点,这样就没有环的情况。然后这样就是一张新的图。也就是相当于在新的图中判断任意2个点能否存在一条路径。这可以用topo排序来解决。如果存在2个点,他们的入度为0,说明这2个点是不能相互到达的。
 
/*
* Author: sweat123
* Created Time: 2016/6/25 12:33:09
* File Name: main.cpp
*/
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<time.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1<<30
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
struct node{
int from;
int to;
int next;
}edge[MAXN*];
int pre[MAXN],vis[MAXN],dfn[MAXN],low[MAXN],n,m,ind;
int f[MAXN],num,k;
stack<int>s;
void add(int x,int y){
edge[ind].from = x;
edge[ind].to = y;
edge[ind].next = pre[x];
pre[x] = ind ++;
}
void dfs(int rt){
vis[rt] = ;
dfn[rt] = low[rt] = ++k;
s.push(rt);
for(int i = pre[rt]; i != -; i = edge[i].next){
int t = edge[i].to;
if(!dfn[t]){
dfs(t);
low[rt] = min(low[rt],low[t]);
} else if(vis[t]){
low[rt] = min(low[rt],dfn[t]);
}
}
if(low[rt] == dfn[rt]){
++ num;
while(!s.empty()){
int tp = s.top();
s.pop();
vis[tp] = ;
f[tp] = num;
if(tp == rt)break;
}
}
}
int x[MAXN],y[MAXN],ans,in[MAXN];
int ok(){
queue<int>q;
for(int i = ; i <= num; i++){
if(in[i] == ){
q.push(i);
}
}
if(q.size() > )return ;
while(!q.empty()){
int tp = q.front();
q.pop();
for(int i = pre[tp]; i != -; i = edge[i].next){
int t = edge[i].to;
in[t] --;
if(in[t] == ){
q.push(t);
}
}
if(q.size() > )return ;
}
return ;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
ind = ;
while(!s.empty())s.pop();
memset(pre,-,sizeof(pre));
for(int i = ; i <= m; i++){
scanf("%d%d",&x[i],&y[i]);
add(x[i],y[i]);
}
k = ;
num = ;
memset(vis,,sizeof(vis));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(f,,sizeof(f));
for(int i = ; i <= n; i++){
if(!dfn[i])dfs(i);
}
memset(pre,-,sizeof(pre));
memset(in,,sizeof(in));
int ret = ind;
for(int i = ; i < ret; i++){
int u = f[edge[i].from];
int v = f[edge[i].to];
if(u != v){
add(u,v);
in[v] ++;
}
}
if(ok()){
printf("Yes\n");
} else{
printf("No\n");
}
}
return ;
}

poj2762 缩点+topo排序的更多相关文章

  1. POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)

    [题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...

  2. topo排序 + 用邻接表优化后的

    输入数据: 4 61 21 32 33 42 44 2 4 61 21 32 33 42 41 2 topo排序为偏序: #include<stdio.h> #include<que ...

  3. codeforce Gym 100685F Flood (topo排序)

    如果直接模拟水向周围流会TLE,因为某些个结点被重复扩展了多次, 科学做法是topo排序,每次只把入度为0的点放入队列,这样就严格保证了每个结点只被扩展一次. #include<bits/std ...

  4. POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)

    这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...

  5. POJ2762 Going from u to v or from v to u? 强连通分量缩点+拓扑排序

    题目链接:https://vjudge.net/contest/295959#problem/I 或者 http://poj.org/problem?id=2762 题意:输入多组样例,输入n个点和m ...

  6. POJ2762 单向连通图(缩点+拓扑排序

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19552 ...

  7. Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序

         Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K       Description I ...

  8. FFF at Valentine(强连通分量缩点+拓扑排序)

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15812 ...

随机推荐

  1. onSaveInstanceState() 和 onRestoreInstanceState()

    本文介绍Android中关于Activity的两个神秘方法:onSaveInstanceState() 和 onRestoreInstanceState(),并且在介绍这两个方法之后,再分别来实现使用 ...

  2. 对于多个列的转行(一个值均匀分布在两个列中),对于个别字段通过取别名,join方式解决。

    例如,这个表的结构: select r.* from RPDATA2016 r WHERE r.data_bbid='HY052' 如图 对于最后两列,如果是字符类型,会存在倒数第二列,是数字类型,会 ...

  3. webapp开发需要注意的浏览器内核知识

    Web App:1.开发成本较低使用web开发技术就可以轻松的完成web app的开发2.升级较简单升级不需要通知用户,在服务端更新文件即可,用户完全没有感觉3.维护比较轻松和一般的web一样,维护比 ...

  4. 临时表之IF-ELSE

    1.解决输出单列到临时表 场景:存储过程传入id,id为缺省的过滤条件,如果id为0,则查找出tt表中的所有id作为过滤条件 目的:id不为0时,过滤id 解决:用case when来代替if els ...

  5. 嵌入支付宝SDK,出现“LaunchServices: ERROR: There is no registered handler for URL scheme alipay”错误

    应用项目中嵌入支付宝SDK,在模拟器运行app后,会出现“LaunchServices: ERROR: There is no registered handler for URL scheme al ...

  6. hadoop:将WordCount打包成独立运行的jar包

    hadoop示例中的WordCount程序,很多教程上都是推荐以下二种运行方式: 1.将生成的jar包,复制到hadoop集群中的节点,然后运行 $HADOOP_HOME/bin/hadoop xxx ...

  7. CareerCup All in One 题目汇总 (未完待续...)

    Chapter 1. Arrays and Strings 1.1 Unique Characters of a String 1.2 Reverse String 1.3 Permutation S ...

  8. 小记sql server临时表与表变量的区别

    临时表与表变量都可以起到“临时”的作用,那么两者主要的区别是什么呢? 这里不讨论创建方式,以及全局临时表.会话临时表这些,主要记录一下个人对两者的主要区别以及适用情况的看法,有什么不对或补充的地方,欢 ...

  9. Spring IOC 源码浅析

    控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. 控制反转一般分为两种类型,依赖注入 ...

  10. 一起来学node.js吧 node school简介

    node.js这几年火爆的简直丧心病狂,去lagou.com查查node.js的职位,那叫一个多. 要说火爆到什么程度,竟然有一个网站专门去教大家学习node.js, Node School. 进去逛 ...