按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径。

二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了。

平移直线就是对于向量ab,因为是逆时针的,向中心平移就是向向量左手边平移,求出长度为r方向指向向量左手边的向量p,a+p指向b+p就是平移后的向量。

半平面交就是对于每个半平面ax+by+c>0,将当前数组里的点(一开始是所有点)带入,如果满足条件,那么保留该点,否则,先看i-1号点是否满足条件,如果满足,那么将i-1和i点所在直线和直线ax+by+c=0的交点加入数组,再看i+1号点如果满足条件,那么将i和i+1号点所在直线和直线ax+by+c=0的交点加入数组。最后看数组里有多少个点,如果0个点那么就是不存在半平面交。

要注意一下向量方向,半平面的直线的方向。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#define dd double
#define eps 1e-5
#define N 505
using namespace std;
int n;
struct Point{
dd x,y;
}p[N],tp[N],q[N];
dd osXoe(const Point &po,const Point &ps,const Point &pe){
return (ps.x-po.y)*(pe.y-po.y)-(pe.x-po.x)*(ps.y-po.y);
}
void eq(const Point &p1,const Point &p2,dd &a,dd &b,dd &c){
a=p2.y-p1.y;
b=p1.x-p2.x;
c=p2.x*p1.y-p1.x*p2.y;
}
Point cross(Point p1,Point p2,dd a,dd b,dd c){
dd u=fabs(a*p1.x+b*p1.y+c);
dd v=fabs(a*p2.x+b*p2.y+c);
Point t;
t.x=(p1.x*v+p2.x*u)/(u+v);
t.y=(p1.y*v+p2.y*u)/(u+v);
return t;
}
int Cut(dd a,dd b,dd c,int cnt){
int tmp=;
for (int i=;i<=cnt;i++){
if(a*p[i].x+b*p[i].y+c>-eps)tp[++tmp]=p[i];
else{
if(a*p[i-].x+b*p[i-].y+c>eps)
tp[++tmp]=cross(p[i-],p[i],a,b,c);
if(a*p[i+].x+b*p[i+].y+c>eps)
tp[++tmp]=cross(p[i],p[i+],a,b,c);
}
}
for (int i=;i<=tmp;i++)p[i]=tp[i];
p[]=p[tmp];p[tmp+]=p[];
return tmp;
}
int solve(dd r){
q[]=q[n];q[n+]=q[];
for (int i=;i<=n+;i++) p[i]=q[i];
int cnt=n;
for (int i=;i<=n;i++){
dd a,b,c;
Point p1,p2,p3;
p1.y=q[i+].x-q[i].x;p1.x=q[i].y-q[i+].y;
dd k=r/sqrt(p1.x*p1.x+p1.y*p1.y);
p1.x=k*p1.x;p1.y=k*p1.y;
//p1是垂直q[i+1]->q[i]指向右手边的长度为r的向量。如果是q[i]->q[i+1]则求指向左手边的。
p2.x=p1.x+q[i].x;p2.y=p1.y+q[i].y;
p3.x=p1.x+q[i+].x;p3.y=p1.y+q[i+].y;
eq(p3,p2,a,b,c);//过p3->p2的直线方程ax+by+c=0
cnt=Cut(a,b,c,cnt);//求半平面交剩下的点
}
return cnt;
}
int main(){
while(cin>>n,n){
for (int i=;i<=n;i++)
scanf("%lf%lf",&q[i].x,&q[i].y);
dd l=,r=<<,m;
while(fabs(r-l)>eps){
m=(l+r)/2.0;
if(solve(m))l=m;
else r=m;
}
printf("%.6f\n",m);
}
}

  

【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)的更多相关文章

  1. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  2. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  3. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  4. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  6. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  7. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  8. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  9. poj 3525Most Distant Point from the Sea【二分+半平面交】

    相当于多边形内最大圆,二分半径r,然后把每条边内收r,求是否有半平面交(即是否合法) #include<iostream> #include<cstdio> #include& ...

随机推荐

  1. Linux打包压缩.md

    Linux下打包压缩命令 下面学习一下压缩和打包的相关命令,首先得先明确两个概念,即:压缩和打包 .我们实际使用中一般是打包和压缩结合的使用,为了学习下面简要的介绍一下压缩文件或目录的命令. 压缩:将 ...

  2. asp.net core 日志

    日志输出是应用程序必不可少的部分,log4net,nlog这些成熟的组件在之前的项目中被广泛使用,在asp.net core的项目中没有找到与之对应的log4net版本,nlog对core提供了很好的 ...

  3. Java命令行的执行参数

    Java 程序命令行参数说明 启动Java程序的方式有两种: # starts a Java virtual machine, loads the specified class, and invok ...

  4. CentOS搭建socket5代理服务器

    1.安装socket5依赖包 yum -y install gcc automake make pam-devel openldap-devel cyrus-sasl-devel   2.下载ss5并 ...

  5. C#——Marshal.StructureToPtr方法简介

    目录 MarshalStructureToPtr方法简介 功能及位置 语法 参数说明 异常 备注 举例 本博客(http://blog.csdn.net/livelylittlefish)贴出作者(三 ...

  6. spring 3.2.x + struts2 + mybatis 3.x + logback 整合配置

    与前面的一篇mybatis 3.2.7 与 spring mvc 3.x.logback整合 相比,只是web层的MVC前端框架,从spring mvc转换成struts 2.x系列,变化并不大 一. ...

  7. 流形学习之等距特征映射(Isomap)

    感觉是有很久没有回到博客园,发现自己辛苦写的博客都被别人不加转载的复制粘贴过去真的心塞,不过乐观如我,说明做了一点点东西,不至于太蠢,能帮人最好.回校做毕设,专心研究多流形学习方法,生出了考研的决心. ...

  8. Jquery 页面首次加载方式

    $(document).ready(function(){ alert("111"); }); $(function(){ alert("222"); }); ...

  9. 多线程处理中Future的妙用

    java 中Future是一个未来对象,里面保存这线程处理结果,它像一个提货凭证,拿着它你可以随时去提取结果.在两种情况下,离开Future几乎很难办.一种情况是拆分订单,比如你的应用收到一个批量订单 ...

  10. 关于Node.js的httpClieint请求报错ECONNRESET的原因和解决措施

    背景说明 最近在工作项目中有下面一个场景: 使用Node.js的express框架实现了一个文件系统服务器端,其中有个API用于客户端上传文件.客户端使用Node.js的HttpClient来调用服务 ...