Logistic回归小结
1.梯度上升优化
1). 伪代码:
所有回归系数初始化为1-------------------weights = ones((colNum,1))
重复r次:
计算整个数据集的梯度gradient
使用alpha*gradient更新回归系数的向量
返回回归系数weights
2). 迭代r次的代码:
for k in range(r): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult
error = (labelMat - h) #vector subtraction
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
2.随机梯度上升
梯度上升算法每次更新回归系数都要遍历整个数据集(批处理),样本集数十亿时复杂度相当高。
一种改进方法是一次仅用一个样本点来更新回归系数(在线学习),该方法称为“随机梯度上升算法”。
1). 伪代码:
所有回归系数初始化为1
对数据集中每个样本:
计算该样本梯度gradient
使用alpha*gradient更新回归系数的向量
返回回归系数weights
2). 用每个样本点更新回归系数代码:
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
3. 1与2比较:
1加载的是列表,用numpy.mat()转成矩阵计算,计算中是向量运算。2加载数据时就已通过numpy.array()转换列表数据为数组数据类型,计算中是数值运算。
4. 改进随机梯度上升
一种判断优化算法优劣的可靠方法是看它是否收敛,也就是说参数是否达到了稳定值,是否还会不断变化。
将2在整个数据集运行200次,绘制出X0,X1,X2三个回归系数的变化情况。发现1)系数2较快达到稳定值,2)大波动停止后,还有周期性小波动,原因是存在一些不能正确分类的样本点(数据及非线性可分),在每次迭代时引发系数剧烈改变。
期望改进:1)避免来回波动,从而收敛到某个值;2)加快收敛速度
改进随机梯度上升算法更新回归系数代码:
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
改进之处:
1)alpha = 4/(1.0+j+i)+0.0001,alpha在每次迭代中都会作调整,缓解数据波动或高频波动。alpha每次减少1/(j+i),j是迭代次数,i表示本次迭代中第i个选出来的样本,当j<<max(i)时,alpha就不是严格下降的。类似模拟退火等其他优化算法中避免参数严格下降。另alpha永远不会减小到0,因为存在常数项,保证在多次迭代后新数据仍有影响。如要处理的问题是动态变化,可适当加大上述常数项,确保新值获得更大回归系数。
2)通过随机选取样本更新回归系数,减小周期波动。这种方法每次随机从列表中选出一个值,然后从列表删除改值(再进行下次迭代)。
效果:与梯度上升分割数据效果差不多,但迭代次数远小于后者,前者20次,后者500次。另系数周期性波动有缓解。
5.画图
Andrew Ng在Cousera ML课中用Octave绘制Decision Boundary,本节中用python matplot实现相同分隔线绘制。本节中还有参数在迭代中变化情况的绘制。
6.数据预处理
数据集来自UCI机器学习数据库http://archive.ics.uci.edu/ml/datasets/Horse+Colic。该数据集有的指标比较主观,有的难以测量(如疼痛程度等)。另数据集有30%数据缺失。
比较用Pandas,R,和Excel处理数据集中缺失值,Excel处理如此次数据量不大、结构不复杂的数据集较为方便。
用Excel将数据集保存为文本分隔文件,缺失值全部用0替换,NumPy数据类型不允许包含缺失值。选择0来替换,恰好适用于Logistic回归。回归系数更新公式如下:
weights = weights + alpha * error * dataMatrix[randIndex]
如果dataMatrix某个特征对应值为0,那么系数将不做更新。
Logistic回归小结的更多相关文章
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- 第五章:Logistic回归
本章内容 □sigmod函数和logistic回归分类器 □最优化理论初步□梯度下降最优化算法□数据中的缺失项处理 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常 ...
- 机器学习实践之Logistic回归
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...
- 第七篇:Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- Logistic回归python实现小样例
假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类.Lo ...
- 【4】Logistic回归
前言 logistic回归的主要思想:根据现有数据对分类边界建立回归公式,以此进行分类 所谓logistic,无非就是True or False两种判断,表明了这其实是一个二分类问题 我们又知道回归就 ...
- 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率
,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...
- [机器学习实战-Logistic回归]使用Logistic回归预测各种实例
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
随机推荐
- 用CSS3实现文字描边
CSS3作为新兴的前端技术可以实现很多复杂变化的效果,比如文字描边. 这里主要用到text-shadow属性,顾名思义就是为文字加上阴影效果.例: text-shadow:10px 5px 2px # ...
- Flyer(二分 HDU4768)
Flyer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...
- Count Color(线段树+位运算 POJ2777)
Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 39917 Accepted: 12037 Descrip ...
- JSON上
关于JSON部分: 目录: 一:定义二:实例三:JSON的语法 一:什么是JSON? 1.JSON:JavaScript 对象表示法(JavaScript Object Notation). 2.JS ...
- 关于NSLog
#ifdef __OBJC__#ifdef DEBUG#define NSLog(fmt,...) NSlog((@"%s [Line %d]" fmt),__PRETTY_FUN ...
- winform基础,主要控件简单介绍,以及小练习
WinForm - C/S B/S 客户端应用程序 - 是需要安装在用户电脑上才可以使用的程序特点:不需要联网也可以打开使用部分功能但是现在的情况是许多功能依然需要互联网的支持 代码部分在用户电脑上执 ...
- 矩阵的QR分解
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> # ...
- 单调队列 hdu2823
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 48608 Accepted: 14047 ...
- Hibernate配置文件
<?xml version='1.0' encoding='utf-8'?> <!DOCTYPE hibernate-configuration PUBLIC "-//Hi ...
- IDEA maven项目 包不能导入问题 全是红线
情况如图所示,红线的话里肯定是没有maven包的 1.检查pom.xml是否报错 报错 右键添加一下 2.点击 3.出现错误提示 4.百度解决