ARC 170_A 题解
AT_arc170_a [ARC170A] Yet Another AB Problem 题解
这道题做了我七天
(同时也是我第一到通过的 ARC 题)
太酷了
其实还是比较好理解的
原题题干
输出 \(-1\) 的情况:
- 在第一个更换的 \(B~A\) (即 \(S_i\) 位)之前有 \(A~B\) (即 \(S_j\) 位)的更换
- 在最后更换的 \(A~B\) (即 \(S_j\) 位)之后有 \(B~A\) (即 \(S_i\) 位)的更换
- 在 \(S_1\) 与 \(S_2\)不相等的情况下,无 \(S_i\) 或无 \(S_j\)
核心思路
if(s1[i]=='B'&&s2[i]=='A'){
suma++;//B~A的个数
}
if(s1[i]=='A'&&s2[i]=='B'){
if(suma==0){
ans++;//若A~B的个数已归零,则ans直接加(与之前的A~A换)
}
else{
suma--;//否则顺便换一个B~A
ans++;
}
}
未归零的 \(A~B\) 的个数则和后面的 \(B~B\) 换;
即 \(ans\) 加未归零的 \(A~B\) ( \(suma\) )的个数
cout<<ans+suma;
另一个问题是怎样找 \(S_i\) 及 \(S_j\) 的可操作区间
我的做法是
l=-1,r=-1; //方便检测是否有Si和Sj
for(int i=0;i<n;i++){
if(s2[i]=='A'){ \\找A~A或B~A
l=i;
break;
}
if(s1[i]=='A'&&s2[i]=='B'){ //即第一种情况在第一个更换的B~A(即Si位)之前有A~B(即Sj位)的更换
cout<<"-1";
return 0;
}
}
if(l==-1){ //第三种情况无Si
cout<<"-1";
return 0;
}
for(int i=n-1;i>l;i--){
if(s2[i]=='B'){ //找B~B或A~B
r=i;
break;
}
if(s1[i]=='B'&&s2[i]=='A'){ //即第二种情况在最后更换的A~B(即Sj位)之后有B~A(即Si位)的更换
cout<<"-1";
return 0;
}
}
if(r==-1){ //第三种情况无Sj
cout<<"-1";
return 0;
}
找出可以进行的“安全区间”进行操作
此为主代码(仅供参考)
#include<bits/stdc++.h> //万能头万岁。。。
#define seq(q,w,e) for(int q=w;q<=e;q++)
#define ll long long
using namespace std;
string s1,s2;
int n,ans,suma,l,r;
int main(){
scanf("%d",&n);
cin>>s1>>s2; //输入字符串
if(s1==s2){ //判断是否相等
cout<<"0";
return 0;
}
l=-1,r=-1;
for(int i=0;i<n;i++){
if(s2[i]=='A'){ \\找A~A或B~A
l=i;
break;
}
if(s1[i]=='A'&&s2[i]=='B'){ //即第一种情况在第一个更换的B~A(即Si位)之前有A~B(即Sj位)的更换
cout<<"-1";
return 0;
}
}
if(l==-1){
cout<<"-1"; //第三种情况无Si
return 0;
}
for(int i=n-1;i>l;i--){
if(s2[i]=='B'){ //找B~B或A~B
r=i;
break;
}
if(s1[i]=='B'&&s2[i]=='A'){ //即第二种情况在最后更换的A~B(即Sj位)之后有B~A(即Si位)的更换
cout<<"-1";
return 0;
}
}
if(r==-1){ //第三种情况无Sj
cout<<"-1";
return 0;
}
seq(i,l,r){ //循环找更换次数
if(s1[i]=='B'&&s2[i]=='A'){
suma++;
}
if(s1[i]=='A'&&s2[i]=='B'){
if(suma==0){
ans++;
}
else{
suma--;
ans++;
}
}
}
cout<<ans+suma; //若若B~A的个数已归零,则ans直接加剩余的A~B的个数(与之后的B~B换)
return 0;
}
本蒟蒻第一次发题解,不好之处见谅 (汗)
ARC 170_A 题解的更多相关文章
- ARC 122 简要题解
ARC 122 简要题解 传送门 A - Many Formulae 考虑对于每个数分别算其贡献. 通过枚举该数前面的符号,借助一个非常简单的 \(\mathrm{DP}\)(\(f_{i,0/1}\ ...
- 【题解】Atcoder ARC#96 F-Sweet Alchemy
首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次 ...
- 【题解】Atcoder ARC#94 F-Normalization
再次膜拜此强题!神级性质之不可能发现系列收藏++:首先,对于长度<=3的情况,我们采取爆搜答案(代码当中是打表).对于长度>=4的情况,则有如下几条玄妙的性质: 首先我们将 a, b, c ...
- [题解] Atcoder Regular Contest ARC 148 A B C E 题解
点我看题 题目质量一言难尽(至少对我来说 所以我不写D的题解了 A - mod M 发现如果把M选成2,就可以把答案压到至多2.所以答案只能是1或2,只要判断答案能不能是1即可.如果答案是1,那么M必 ...
- [题解] Atcoder Regular Contest ARC 147 A B C D E 题解
点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...
- [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP
题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...
- [题解] Atcoder Regular Contest ARC 151 A B C D E 题解
点我看题 昨天刚打的ARC,题目质量还是不错的. A - Equal Hamming Distances 对于一个位置i,如果\(S_i=T_i\),那么不管\(U\)的这个位置填什么,对到\(S\) ...
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- 【题解】Atcoder ARC#67 F-Yakiniku Restaurants
觉得我的解法好简单,好优美啊QAQ 首先想想暴力怎么办.暴力的话,我们就枚举左右端点,然后显然每张购物券都取最大的值.这样的复杂度是 \(O(n ^{2} m)\) 的.但是这样明显能够感觉到我们重复 ...
- 【题解】Atcoder ARC#85 E-MUL
……没啥可说的.最大权闭合子图,跑下dinic就好了…… #include <bits/stdc++.h> using namespace std; #define maxn 500000 ...
随机推荐
- Windows 官方提供的触屏硬件延迟测量方法
本文记录微软 Windows 官方在 Windows Hardware Lab Kit 提供的触屏硬件延迟测量方法 Overview of measuring Touch Down Hardware ...
- IIncrementalGenerator 获取项目默认命名空间
本文将告诉大家如何在分析器里面获取到项目的默认命名空间 在 Roslyn 分析器里面读取项目的默认命名空间,可以通过读取项目的属性配置实现.通过 IIncrementalGenerator 增量 So ...
- 2019-10-7-WPF-will-break-when-an-exception-be-throw-in-the-StylusPlugIn
title author date CreateTime categories WPF will break when an exception be throw in the StylusPlugI ...
- SQL server 自定义工资公式设计
目的: 工资系统中,在计算各工资项目的时候,用户能自定义公式.这里的讲述是从数据库方设计方面考虑,做简要的数据模拟和实体.存储过程的设计. 收集数据: 1.Employee员工信息数据(Employe ...
- ESP32 I2C 总线主模式通信程序
一.概述 这里主要是记录 ESP32 中进行 I2C 通行的基本程序,也可以说是 I2C 总线驱动程序,当然这里只是作为主模式,从模式我还没需要这个需求,以后有机会贴上.此笔记的主要目的是防止以后写 ...
- 阿里巴巴Canal常见问题:重复解析/Filter失效/消费落后
前言 Canal是阿里巴巴开源的数据库Binlog日志解析框架,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费. 在之前我写的文章阿里开源MySQL中间件Canal快速入门中, ...
- Data LakeHouse_理解湖仓一体
Data Lakehouse(湖仓一体)是数据管理领域中的一种新架构范例,结合了Data Warehouse和Data Lakes的最佳特性.数据分析师和数据科学家可以在同一个数据存储中对数据进行操作 ...
- 使用Lagent AgentLego 搭建智能体-书生浦语大模型实战营第二期第6节作业
书生浦语大模型实战营第二期第6节作业 对于这个作业,这里只给出截图,不给详细过程,因为确实没有什么好写的,会做Demo那个作业就会做这个作业.具体的步骤可以查看官方教程. 基础作业 完成 Lagent ...
- 02. rails安装
rails安装 ruby 1.8.6 对应的rails是2.3.2 Ruby 1.8.7 或 1.9.2 对应的rails 2.3.x ruby1.9.3,对应的rails是3.2.12, ruby2 ...
- List集合中获取重复元素
一.方法1 ## 测试数据 List<String> words = Arrays.asList("a", "b", "c", ...