Redis24篇集合

1 主从模式介绍

在笔者的另外两篇文章 《Redis系列:RDB内存快照提供持久化能力》、《Redis稳定性之战:AOF日志支撑数据持久化》中,我们介绍了Redis中的数据持久化技术,包括 RDB快照 和 AOF日志 。有了这两个利器,我们再也不用担心机器宕机,数据丢失了。

但是持久化技术只是解决了Redis服务故障之后,快速数据恢复的问题。宕机和数据恢复的过程中整个业务系统来说,还是有损失的,并没有根本上提升可用性问题,而且持久化技术对于Redis服务性能来说是有损的。

我们需要的是保障Redis的高可用,减少甚至避免Redis服务发生宕机的可能。

目前实现Redis高可用的模式主要有三种: 主从模式、哨兵模式、集群模式。今天我们先来聊一下主从模式。

Redis 提供的主从模式,是通过复制的方式,将主服务器上的Redis的数据同步复制一份到从 Redis 服务器,这种做法很常见,MySQL通过binlog进行的主从复制也是这么做的。

主节点的Redis我们称之为master,从节点的Redis我们称之为slave,主从复制为单向复制,只能由主到从,不能由从到主。可以有多个从节点,比如1主3从甚至n从,从节点的多少根据实际的业务需求来判断。

2 主从架构如何保证数据一致性?

为了保证主服务器Redis的数据和从服务器Redis的数据的一致性,也为了分担访问压力,均衡负载,应用层面一般采取读写分离的模式。

读操作:主、从库都可以执行,一般是在从库上读数据,对实时性和准确性有100%高真要求的部分业务,在谨慎评估之后也可以读主库,前提是不能给Master带来高压力和风险。

写操作:只在主库上写数据,写完之后将写操作指令同步到从库。

参考下图:

2.1 读写分离模式

读写分离模式的使用跟MySQL做读写分离的初衷是一样的。因为我们已经划分了主从库,而且从库的数据是由主库单向复制的。如果主从库都可以执行写指令,那么在高频并发场景下对不同的副本数据做修改,操作会具有无序性,极易导致各副本产生数据不一致,这是分布式模式的弊病。 如果非要保证数据的强一致性,Redis 需要加锁处理,或者使用队列顺序执行,这样势必降低Redis的性能,降低服务的吞吐能力,这就不是高性能Redis所能接受的。

2.2 主从复制和读写分离的意义

  • 故障隔离和恢复:无论主节点或者从节点宕机,其他节点依然可以保证服务的正常运行,并可以手动或自动切换主从。

    • 如果Slave库故障,则读写操作全部走到Master库中
    • 如果Master库故障,则将Slave转成Master库,仅丢失Master库来不及同步到Slave的小部分数据
  • 读写隔离:Master 节点提供写服务,Slave 节点提供读服务,分摊流量压力,均衡流量的负载。
  • 提供高可用保障:主从模式是高可用的最基础版本,也是 sentinel 哨兵模式和 cluster 集群模式实施的前置条件。

3 搭建Redis主从复制模式

Redis的主从架构中,主节点的数据更新会自动被复制到从节点,确保数据的一致性。主从复制的开启,在从节点配置和发起即可,不需要我们在主节点做任何事情。

可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系。在从节点开启主从复制,如下:

说明:masterip:主机IP,masterport:主机端口号

3.1 主库配置

# 设置Redis监听的IP地址和端口号,默认监听所有IP地址和6379端口
bind 0.0.0.0 # 启用保护模式,允许远程访问
protected-mode no # 指定Redis监听的端口号
port 6380 # 增加Redis的最大内存限制,以容纳更多数据
#maxmemory 16GB 增加内存限制,根据您的服务器实际内存调整
maxmemory 20480mb

3.2 从库配置

在从服务器的配置文件中加入

replicaof <masterip> <masterport>

假设现在有主实例 (10.21.125.1:6380)、从实例 A(10.21.125.2:6379)和 从实例 B (10.21.125.3:6379),在两个从实例上分别执行以下命令,就成为了Slave,主实例成为 Master。

# 修改为从库监听的端口号
port 6379 # 添加需要同步的主库信息
replicaof 10.21.125.1 6380

4 主从复制原理

主从库模式开启之后,应用层面采用读写分离,所有数据的写操作只会在主库上进行,而读操作基本会在从库上进行(特殊情况下部分读业务允许走主库)。

主从会保持最终一致性:主库有了数据更新之后,会立即同步给从库,来保证主从库的数据的一致的。

4.1 主从库的同步机制

Redis 的主从复制机制均采用异步复制,我们也称为乐观复制,这种复制方式意味着不能完全保证主库和从库数据的实时一致性。

Redis的主从复制机制可以根据不同的业务场景可以采用不同的应对方式。下面是一些主要场景及其对应的实现方案:

1. 首次配置完成主从库之后的全量复制:在从库第一次连接到主库时,将采用psync复制方式进行全量复制。 这意味着从库会从头开始复制主库中的全部数据。

2. 主从正常运行期间,准实时同步:在正常运行状态下,从库通过读取主库的缓冲区来进行增量复制。 这个过程涉及复制主库上发生的新的数据变更。

3. 从库第二次启动(异常或主从网络断开后恢复): Append增量数据 + 准实时同步将通过读取主库的缓冲区进行部分复制。 这种方式能够快速同步中断期间发生的数据变更,而不会对主库造成重大影响。

PSYNC 命令是Redis中用于从节点与主节点之间数据同步的关键命令。它的工作原理包括以下几个步骤:

1. 启动或重连判断:

当从节点(Slave)启动或与主节点(Master)的连接断开后重连时,从节点需要确定是否曾经同步过。

如果从节点没有保存任何主节点的运行ID(runid),它将视为第一次连接到主节点。

2. 首次同步处理:

如果是第一次同步的情况下,从节点会发送 PSYNC -1 命令给主节点,代表请求全量数据同步。 全量同步是指主节点将其所有数据完整地Copy一份给从节点。

3. 主从重连后的处理:

对于之前已经同步过的从节点,它会发送 PSYNC runid offset 命令,其中runid是主节点的唯一标识符,offset是从节点上次同步数据的偏移量。这样本质就是增量同步。

4. 主节点响应:

主节点接收到PSYNC命令后,会检查runid是否匹配,以及offset是否在复制积压缓冲区的范围内。

如果匹配且offset有效,主节点将回复CONTINUE,并发送自从节点上次断开连接以来的所有写命令。

5. 触发全量同步的条件:

如果runid不匹配,或offset超出了积压缓冲区的范围,主节点将通知从节点执行全量同步,回复FULLRESYNC runid offset

6. 积压缓冲区的作用:

主节点会在处理写命令的同时,将这些命令存入复制积压队列(缓冲池),同时记录队列中存放命令的全局offset。

这样做法是保证了效率。当从节点断线重连,且条件允许时(runid和offset都具备),它可以通过offset从积压队列中进行增量复制,而不是全量复制,这样复制的成本就低很多。

7. 保障数据一致性:

PSYNC机制允许从节点在网络不稳定或其他意外断开连接的情况下,能够以增量方式重新同步数据。这也是它的一大优势,那就是保持主从节点数据的一致性。

8. 什么时候启动重连工作

判断是否进行全量同步,需要考虑两个关键因素:首先,确认这是否是第一次进行数据同步;其次,检查缓存区是否已经达到或超过其容量上限。只有在是第一次同步,或者缓存区已溢出的情况下,才会执行全量同步。

4.2 1主n从的同步说明

如果你有多个从库,则在每次连接的时候需要注意一些细节,如下:

  • 多个从库情况下,每个从库都会记录自己的 slave_repl_offset,各自复制的进度也不相同。
  • 重连主库进行恢复时,从库会通过 psync 命令将 slave_repl_offset 告知主库,主库判断从库的状态,来决定进行增量复制,还是全量复制。
  • replication buffer 和 repl_backlog 的说明
    • replication buffer 是主从库在进行全量复制时,主库上用于和从库连接的客户端的 buffer
    • repl_backlog_buffer 是为了支持从库增量复制,主库上用于持续保存写操作的一块专用 buffer,所有从库共享的
  • 主库和从库会各自记录自己的复制进度,所以,不同的从库在进行恢复时,需要将自己的复制进度(slave_repl_offset)发给主库,主库才可以按照偏移量取数据跟它同步。

如图所示:

5 总结

  • 主从复制的作用一个是为分担读写压力,均衡负载,另一个是为了保证部分实例宕机之后服务的持续可用性,所以Redis演变出主从架构和读写分离。
  • 主从复制的步骤包括:建立连接的阶段、数据同步的阶段、基于长连接的命令传播阶段。
  • 数据同步可以分为全量复制和部分复制,全量复制一般为第一次全量或者长时间主从连接断开。
  • 主从模式是比较低级的可用性优化,要做到故障自动转移,异常预警,高保活,还需要更为复杂的哨兵或者集群模式,这个后面我们继续介绍。

Redis高可用之战:主从架构的更多相关文章

  1. Redis 高可用篇:你管这叫主从架构数据同步原理?

    在<Redis 核心篇:唯快不破的秘密>中,「码哥」揭秘了 Redis 五大数据类型底层的数据结构.IO 模型.线程模型.渐进式 rehash 掌握了 Redis 快的本质原因. 接着,在 ...

  2. 如何构建 Redis 高可用架构?

    温国兵 民工哥技术之路 今天 1 .题记 Redis 是一个开源的使用 ANSI C 语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value 数据库,并提供多种语言的 API. 如今,互 ...

  3. Redis高可用架构—Keepalive+VIP

    最近整理一下Redis高可用架构的文档,也准备分享出来,虽然这些架构也不是很复杂.Redis的高可用方案目前主要尝试过5种方式,其中2种方式已经在线上使用. 1)Redis Master-Slave ...

  4. Redis高可用架构

    前言 Redis是一个高性能的key-value数据库,现时越来越多企业与应用使用Redis作为缓存服务器.楼主是一枚JAVA后端程序员,也算是半个运维工程师了.在Linux服务器上搭建Redis,怎 ...

  5. Redis 高可用架构设计(转载)

    转载自:https://mp.weixin.qq.com/s?__biz=MzA3NDcyMTQyNQ==&mid=2649263292&idx=1&sn=b170390684 ...

  6. 三分钟带你入门 redis 高可用架构之哨兵

    什么是哨兵? 哨兵(Sentinel)是 redis 的高可用性解决方案,前面我们讲的主从复制它是高可用的基础,需要人工介入才能完成故障转移,哨兵可以解决这个问题,在主从复制情况下,当主节点发生故障时 ...

  7. Redis高可用方案----Redis主从+Sentinel+Haproxy

    安装环境 这里使用三台服务器,每台服务器上开启一个redis-server和redis-sentinel服务,redis-server端口为6379,redis-sentinel的端口为26379. ...

  8. Redis 高可用集群

    Redis 高可用集群 Redis 的集群主从模型是一种高可用的集群架构.本章主要内容有:高可用集群的搭建,Jedis连接集群,新增集群节点,删除集群节点,其他配置补充说明. 高可用集群搭建 集群(c ...

  9. sentinel监控redis高可用集群(一)

    一.首先配置redis的主从同步集群. 1.主库的配置文件不用修改,从库的配置文件只需增加一行,说明主库的IP端口.如果需要验证的,也要加多一行,认证密码. slaveof 192.168.20.26 ...

  10. Redis高可用详解:持久化技术及方案选择

    文章摘自:https://www.cnblogs.com/kismetv/p/9137897.html 前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关 ...

随机推荐

  1. Goland 使用[临时]

    环境变量 因为module模式的引入, 多个项目可以共用同一套External Libraries, 在File->Settings->Go中, 设置GOROOT为go安装目录, 例如 / ...

  2. 【Unity3D】UGUI之Toggle

    1 Toggle属性面板 ​ 在 Hierarchy 窗口右键,选择 UI 列表里的 Toggle 控件,即可创建 Toggle 控件,选中创建的 Toggle 控件,按键盘[T]键,可以调整 Tog ...

  3. 【OpenGL ES】渐变凸镜贴图

    1 前言 ​ 正方形图片贴到圆形上 中将正方形图片上的纹理映射到圆形模型上,凸镜贴图 中介绍了将圆形图片上的纹理映射到凸镜模型上.如果将原图片逐渐变为凸镜效果,中间的变化过程又是什么样的? ​ 图片的 ...

  4. Modbus协议入门

    1.Modbus协议是不是开源的,免费的? 标准.开放,用户可以免费.放心地使用Modbus协议,不需要交纳许可证费,也不会侵犯知识产权. 2.怎么传输,有线还是无线? 既可以有线传输如双绞线.光纤, ...

  5. 深入理解Go语言(03):scheduler调度器 - 基本介绍

    一:什么是调度 平常我们在生活中会有哪些调度的例子呢?比如十字路口的红绿灯,它就是一种调度系统.在交通十字路口,每个路口上多多少少有一些车辆,为了限制这些车辆不随意行驶,就建起了红绿灯调度系统.红绿灯 ...

  6. 泛型类Generic注解

    在 Python 的 typing 模块中,Generic 是一个泛型类,用于创建参数化的类和函数,以便支持不同类型的参数.它允许你定义具有类型参数的类,这些类型参数在实例化时才确定.这样,你可以在不 ...

  7. vscode配置远程开发环境

    下载vscode 下载好了后,先安装两个插件,商店里面搜索"Chinese",中文语言包, "python"安装包,安装好后重启vscode. 本地的pytho ...

  8. 手写web框架

    重新认识HTTP http请求报文包含三个部分(请求行 + 请求头 + 请求体) 请求行 请求行包含三个内容: method + request-URI + http-version -- 例如 GE ...

  9. Taurus.MVC WebMVC 入门开发教程5:表单提交与数据验证

    前言: 在本篇 Taurus.MVC WebMVC 入门开发教程的第五篇文章中,我们将学习如何处理表单提交和进行数据验证. 这是 Web 开发中非常重要的一部分,因为它涉及到用户输入数据的处理和有效性 ...

  10. 【Azure 应用服务】Java ODBC代码中,启用 Managed Identity 登录 SQL Server 报错 Managed Identity authentication is not available

    问题描述 在App Service中启用Identity后,使用系统自动生成 Identity. 使用如下代码连接数据库 SQL Server: SQLServerDataSource dataSou ...