NMS(non maximum suppression)即非极大值抑制,广泛应用于传统的特征提取和深度学习的目标检测算法中。

NMS原理是通过筛选出局部极大值得到最优解。

在2维边缘提取中体现在提取边缘轮廓后将一些梯度方向变化率较小的点筛选掉,避免造成干扰。

在三维关键点检测中也起到重要作用,筛选掉特征中非局部极值。

在目标检测方面,无论是One-stage的SSD系列算法、YOLO系列算法还是Two-stage的基于RCNN系列的算法,非极大值抑制都是其中必不可少的一个组件,可以将较小分数的输出框过滤掉,同样,在三维基于点云的目标检测模型中亦有使用。

在现有的基于anchor的目标检测算法中,都会产生数量巨大的候选矩形框,这些矩形框有很多是指向同一目标,因此就存在大量冗余的候选矩形框。非极大值抑制算法的目的正在于此,它可以消除多余的框,找到最佳的物体检测位置。

IoU(Intersection over Union) :定位精度评价公式。

相当于两个区域交叉的部分除以两个区域的并集部分得出的结果。



IoU各个取值时的情况展示,一般来说,这个 Score > 0.5 就可以被认为一个不错的结果了。

IOU计算:

如何计算IoU(交并比)

选取两个矩形框左顶角的横,纵坐标的最大值,x21,y21;选取两个矩形框右下边角的横纵坐标的最小值,x12,y12;

  • 交集面积计算:
\[{Area(A \cap B)} = |x12 - x21| * |y12 - y21|
\]
  • 并集面积计算:
\[{Area(A \cup B)} = |x11 - x12| * |y11 - y12| + |x21 - x22| * |y21 - y22| - {Area(A \cap B)}
\]
  • 计算IOU公式
\[IoU = \frac {Area(A \cap B)} {Area(A \cup B)}
\]

算法流程如下:

  • 将所有框的得分排序,选中最高分及其对应的框
  • 遍历其余的框,如果和当前最高分框的重叠面积(IOU)大于一定阈值(常用的值为0.5左右),我们就将框删除。(为什么要删除,是因为超过设定阈值,认为两个框的里面的物体属于同一个类别,比如都属于狗这个类别。我们只需要留下一个类别的可能性框图即可。)
  • 从未处理的框中继续选一个得分最高的,重复上述过程。





代码如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
NMS function(Non-Maximum Suppression, 抑制不是极大值的元素)
psedocode:
1. choose the highest score element a_1 in set B, add a_1 to the keep set C
2. compute the IOU between the chosen element(such as a_1) and others elements in set B
3. only keep the nums at set B whose IOU value is less than thresholds (can be set as >=0.5), delete the nums similiar
to a_1(the higher IOU it is , the more interseciton between a_1 and it will have)
4. choose the highest score value a_2 left at set B and add a_2 to set C
5. repeat the 2-4 until there is nothing in set B, while set C is the NMS value set """
import numpy as np # boxes表示人脸框的xywh4点坐标+相关置信度
boxes = np.array([[100, 100, 210, 210, 0.72],
[250, 250, 420, 420, 0.8],
[220, 220, 320, 330, 0.92],
[230, 240, 325, 330, 0.81],
[220, 230, 315, 340, 0.9]]) def py_cpu_nms(dets, thresh):
# dets:(m,5) thresh:scaler x1 = dets[:, 0] # [100. 250. 220. 230. 220.]
y1 = dets[:, 1] # [100. 250. 220. 240. 230.]
x2 = dets[:, 2] # [210. 420. 320. 325. 315.]
y2 = dets[:, 3] # [210. 420. 330. 330. 340.] areas = (y2 - y1 + 1) * (x2 - x1 + 1)
scores = dets[:, 4] # [0 1 3 4 2]
keep = []
# index表示按照scores从高到底的相关box的序列号
index = scores.argsort()[::-1] # [2 4 3 1 0] while index.size > 0:
print("sorted index of boxes according to scores", index)
# 选择得分最高的score直接加入keep列表中
i = index[0]
keep.append(i)
# 计算score最高的box和其他box分别的相关交集坐标
x11 = np.maximum(x1[i], x1[index[1:]]) # [220. 230. 250. 220.] 最高的被提走了,所以要从1开始取后 4位
y11 = np.maximum(y1[i], y1[index[1:]]) # [230. 240. 250. 220.]
x22 = np.minimum(x2[i], x2[index[1:]]) # [315. 320. 320. 210.]
y22 = np.minimum(y2[i], y2[index[1:]]) # [330. 330. 330. 210.] print("x1 values by original order:", x1)
print("x1 value by scores:", x1[index[:]]) # [220. 220. 230. 250. 100.]
print("x11 value means replacing the less value compared" \
" with the value by the largest score :", x11)
# 计算交集面积
w = np.maximum(0, x22 - x11 + 1) # the weights of overlap
h = np.maximum(0, y22 - y11 + 1) # the height of overlap
overlaps = w * h
# 计算相关IOU值(交集面积/并集面积,表示边框重合程度,越大表示越相似,越该删除)
# 重叠面积 /(面积1+面积2-重叠面积)
ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
# 只保留iou小于阈值的索引号,重复上步
idx = np.where(ious <= thresh)[0]
# 因为第一步index[0]已经被划走,所以需要原来的索引号需要多加一
index = index[idx + 1] return keep import matplotlib.pyplot as plt def plot_bbox(ax, dets, c='b', title_name="title"):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3] ax.plot([x1, x2], [y1, y1], c)
ax.plot([x1, x1], [y1, y2], c)
ax.plot([x1, x2], [y2, y2], c)
ax.plot([x2, x2], [y1, y2], c)
ax.set_title(title_name) if __name__ == '__main__':
# 1.创建画板fig
fig = plt.figure(figsize=(12, 6)) # 参数解释,前两个参数 1,2 表示创建了一个一行两列的框 第三个参数表示当前所在的框
ax1 = fig.add_subplot(1, 2, 1)
ax2 = fig.add_subplot(1, 2, 2) plot_bbox(ax1, boxes, 'k', title_name="before nms") # before nms keep = py_cpu_nms(boxes, thresh=0.7) plot_bbox(ax2, boxes[keep], 'r', title_name="after nms") # after nms
plt.show()

参考文献:

https://blog.csdn.net/weixin_42237113/article/details/105743296

https://blog.csdn.net/lz867422770/article/details/100019587

非极大值抑制(NMS)算法详解的更多相关文章

  1. 非极大值抑制(NMS)

    非极大值抑制顾名思义就是抑制不是极大值的元素,搜索局部的极大值.这个局部代表的是一个邻域,邻域有两个参数可变,一个是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法,而是用于在目标检测中提取分数 ...

  2. MATLAB的边缘检测函数中隐含的细化(非极大值抑制)算法

    前段时间做了一个车牌检测识别的项目,我的任务是将MATLAB中的算法移植成C++代码.在车牌区域提取的过程中,用到了水平方向的Sobel算子检测垂直边缘,一开始我直接把MATLAB中的 bw = ed ...

  3. pytorch实现yolov3(4) 非极大值抑制nms

    在上一篇里我们实现了forward函数.得到了prediction.此时预测出了特别多的box以及各种class probability,现在我们要从中过滤出我们最终的预测box. 理解了yolov3 ...

  4. 目标检测后处理之NMS(非极大值抑制算法)

    1.定义: 非极大值抑制算法NMS广泛应用于目标检测算法,其目的是为了消除多余的候选框,找到最佳的物体检测位置. 2.原理: 使用深度学习模型检测出的目标都有多个框,如下图,针对每一个被检测目标,为了 ...

  5. 非极大值抑制(Non-Maximum Suppression,NMS)

    概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二 ...

  6. 非极大值抑制(NMS)

    转自:https://www.cnblogs.com/makefile/p/nms.html 概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的 ...

  7. 非极大值抑制Non-Maximum Suppression(NMS)

    非极大值抑制(Non-Maximum Suppression,NMS)   概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局 ...

  8. IoU与非极大值抑制(NMS)的理解与实现

    1. IoU(区域交并比) 计算IoU的公式如下图,可以看到IoU是一个比值,即交并比. 在分子中,我们计算预测框和ground-truth之间的重叠区域: 分母是并集区域,或者更简单地说,是预测框和 ...

  9. Non-Maximum Suppression,NMS非极大值抑制

    Non-Maximum Suppression,NMS非极大值抑制概述非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索. ...

  10. 非极大值抑制算法(Python实现)

    date: 2017-07-21 16:48:02 非极大值抑制算法(Non-maximum suppression, NMS) 算法原理 非极大值抑制算法的本质是搜索局部极大值,抑制非极大值元素. ...

随机推荐

  1. redo log的用处

    redo log用途 1. 用途 保证数据的更新操作不丢失,同时保证了性能 2. 如何没有redo log,如何保证数据库的更新操作不会由于数据库的宕机而丢失? 对数据库进行修改,应该是先从磁盘读取数 ...

  2. java 面向对象 --static

    java 面向对象 --static package charpter5.Demo09; //static public class Student { private static int age; ...

  3. 在Winform分页控件中集成导出PDF文档的功能

    当前的Winform分页控件中,当前导出的数据一般使用Excel来处理,Excel的文档可以用于后期的数据展示或者批量导入做准备,因此是比较好的输入输出格式.但是有框架的使用客户希望分页控件能够直接导 ...

  4. Rancher 系列文章-Rancher 升级

    概述 之前在 天翼云上用 4 台机器安装了一个 1 master(及 etcd) 3 node 的 K3S 集群,并在其上使用 Helm 安装了 Rancher 2.6.3 版本. 前几天发现 Ran ...

  5. ChatGPT搭建AI网站实战

    1.概述 ChatGPT是一款基于GPT-3.5架构的大型语言模型,它能够进行自然语言处理和生成对话等任务.作为一款智能化的聊天机器人,ChatGPT有着广泛的应用场景,如在线客服.智能助手.个性化推 ...

  6. 超全 泛微 E9 Ecology 9开发资料大全 开源资源下载 泛微E9二次开发 泛微开发实战经验 泛微开发实战例子 泛微二次开发项目例子 泛微二次开发Demo 泛微二次开发完整例子 泛微二次开发入门

    由于工作需要,E9在泛微一推出来,以前所在的企业就第一时间上线了,经过四年多的运行,功能强大再加上在上面开发非常多的业务,一般的企业员工只需要打开泛微就可以处理完平时信息化的业务.后来又去外包公司专业 ...

  7. 全网最详细中英文ChatGPT-GPT-4示例文档-快速创意生成从0到1快速入门——官网推荐的48种最佳应用场景(附python/node.js/curl命令源代码,小白也能学)

    目录 Introduce 简介 setting 设置 Prompt 提示 Sample response 回复样本 API request 接口请求 python接口请求示例 node.js接口请求示 ...

  8. smtp.office365.com 无法从传输连接中读取数据: net_io_connectionclosed

    这几天发送邮件时突然会报一个错 无法从传输连接中读取数据:net_io_connectionclosed. 因使用的是 smtp.office365.com 经过查询,发现了这个 Recently, ...

  9. HOOPS Exchange助力Shapr3D产品实现了“无障碍的用户体验”

    HOOPS SDK是用于3D工业软件开发的工具包,其中包括4款工具,分别是用于 读取和写入30多种CAD文件格式的HOOPS Exchange.专注于Web端工程图形渲染的HOOPS Communic ...

  10. Python中的print()语句

    Python中print()语句的相关使用 介绍 print()函数可以将输出的信息打印出来,即发送给标准输出流.Python中可以直接使用print()函数,将信息展示在控制台 基本使用方法 输出数 ...