bzoj1584
1584: [Usaco2009 Mar]Cleaning Up 打扫卫生
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 467 Solved: 316
[Submit][Status][Discuss]
Description
有N头奶牛,每头那牛都有一个标号Pi,1
<= Pi <= M <= N <= 40000。现在Farmer
John要把这些奶牛分成若干段,定义每段的不河蟹度为:若这段里有k个不同的数,那不河蟹度为k*k。那总的不河蟹度就是所有段的不河蟹度的总和。
Input
第一行:两个整数N,M
第2..N+1行:N个整数代表每个奶牛的编号
Output
一个整数,代表最小不河蟹度
Sample Input
1
2
1
3
2
2
3
4
3
4
3
1
4
Sample Output
HINT
Source
不愿意动脑子,也想不出来
首先我们可以发现,因为最小值最大也就是n,也就是把所有东西分成长度为1的段
所以我们可以知道绝对不可以让一段有>=n^0.5种数字
考虑dp,设b[j]为一段有j种数字,最近对应的位置(区间为i-b[j]+1),pre[i]:上一个数字i出现的位置,cnt[j]:其实记录更新时有没有修改。
方程就得出了:f[i]=min{f[b[j]]+j*j} 1<=j<=n^0.5 复杂度为O(n^1.5)
怎么更新b呢?可以发现,当一个新的数字被加进时,b[j]有可能修改,当且仅当从i-b[j]+1中没有这个数字,这时我们用cnt记录被修改,然后一个一个向前找,直到我们可以删掉一个数字,使得这段中有j个数字
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 40010
int n,m;
int f[N],a[N],pre[N],b[N],cnt[N];
int main()
{
memset(f,0x3f,sizeof(f)); f[]=;
memset(pre,-,sizeof(pre));
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
int size=(int)(sqrt(n));
for(int i=;i<=n;i++)
{
for(int j=;j<=size;j++) {
if(pre[a[i]]<=b[j]) cnt[j]++;
}
pre[a[i]]=i;
for(int j=;j<=size;j++) {
if(cnt[j]>j) {
int pos=b[j]+;
while(pre[a[pos]]>pos) pos++;
b[j]=pos; cnt[j]--;
}
}
for(int j=;j<=size;j++) {
f[i]=min(f[i],f[b[j]]+j*j);
}
}
printf("%d",f[n]);
return ;
}
bzoj1584的更多相关文章
- BZOJ1584 [Usaco2009 Mar]Cleaning Up 打扫卫生
令$f[i]$表示以i为结尾的答案最小值,则$f[i] = min \{f[j] + cnt[j + 1][i]^2\}_{1 \leq j < i}$,其中$cnt[j + 1][i]$表示$ ...
- 2018.10.19 bzoj1584: Cleaning Up 打扫卫生(线性dp)
传送门 dp妙题. 考虑到每个位置分一组才花费nnn的贡献. 因此某一段不同的数的个数不能超过sqrt(n)sqrt(n)sqrt(n),于是对于当前的位置iii我们记pos[j]pos[j]pos[ ...
- [BZOJ1584]Cleaning Up 打扫卫生
Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...
- 【动态规划】bzoj1584: [Usaco2009 Mar]Cleaning Up 打扫卫生
思路自然的巧妙dp Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分 ...
- [BZOJ1584] [Usaco2009 Mar]Cleaning Up 打扫卫生(DP)
传送门 不会啊,看了好久的题解才看懂 TT 因为可以直接分成n段,所以就得到一个答案n,求解最小的答案,肯定是 <= n 的, 所以每一段中的不同数的个数都必须 <= sqrt(n),不然 ...
- bzoj1584 [Usaco2009 Mar]Cleaning Up 打扫卫生 动态规划+思维
Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...
- bzoj1584 9.20考试 cleaning up 打扫卫生
1584: [Usaco2009 Mar]Cleaning Up 打扫卫生 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 549 Solved: 38 ...
- bzoj1584--DP
题目大意:有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的不河蟹度为:若 ...
- 【刷题记录】BZOJ-USACO
接下来要滚去bzoj刷usaco的题目辣=v=在博客记录一下刷题情况,以及存一存代码咯.加油! 1.[bzoj1597][Usaco2008 Mar]土地购买 #include<cstdio&g ...
随机推荐
- DropDownList默认选中
一.DropDownList默认选中 开始的笨方法: foreach (ListItem item in DropDownList1.Items) { ...
- SQL2008使用json.net实现XML与JSON互转
借助CLR,首先实现字符串的互转,然后使用存储过程实现JSON2table public class JsonFunction { /// <summary> ...
- [C#6] 2-nameof 运算符
0. 目录 C#6 新增特性目录 1. 老版本的代码 using System; namespace csharp6 { internal class Program { private static ...
- 关于Redis数据过期策略
1.Redis中key的的过期时间 通过EXPIRE key seconds命令来设置数据的过期时间.返回1表明设置成功,返回0表明key不存在或者不能成功设置过期时间.在key上设置了过期时间后ke ...
- 服务器文件上传下载(XShell+Xftp)
1.下载XShell安装包+Xftp安装包.百度网盘(XShell):https://pan.baidu.com/s/1eR4PFpS 百度网盘(Xftp):https://pan.baidu.com ...
- Linux简介及常用命令使用4--linux高级命令与技巧
top 几个磁盘fdisk -l 磁盘空间 df -lhdf -al 查看进程:ps -ef"grep java杀死进程:kill -9 进程号 more中过滤 more xxx |grep ...
- php函数 ceil floor round和 intval
1.ceil 如果有小数部分 则进一位 < ?php echo ceil(4.3); echo ceil(9.999); ?> 2.floor 舍小取整 < ? php echo f ...
- DNS相关知识
1 DNS解析过程详解 2 DNS原理总结及其解析过程详解 3 DNS原理及其解析过程[精彩剖析] 4 DNS域名解析原理 5 dig挖出DNS的秘密 6 nslookup通往DNS的桥梁 7 DNS ...
- windows下安装并配置mysql
前言:前面三篇文章将django的环境搭建完后,还只能编写静态网页,如果要用到数据库编写动态网页,那么还需要数据库 本章讲解mysql5.6数据库的安装和配置,对于其他版本仅供参考,不一定试用!推荐使 ...
- NYOJ-858下三角矩阵
下三角矩阵 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 给定一个由0和1组成的矩阵.只允许交换相邻的两行,要把矩阵转化成下三角矩阵(主对角线上方的元素都是0),最少需 ...