洛谷 P1004 方格取数 【多线程DP/四维DP/】
题目描述(https://www.luogu.org/problemnew/show/1004)
设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放
人数字0。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. B
某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B
点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个
表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式:
只需输出一个整数,表示2条路径上取得的最大的和。
输入输出样例
说明
NOIP 2000 提高组第四题
【分析】:
第一点:开四维数组:
把两条路径当作两个人同时在走,
则有四个坐标,分别为两个人的
纵横坐标,同理开四个for循环。
第二点:决策:
有四种走法:
(下,下),(下,右),
(右,下),(右,右)。
分别表示为:
s[i-1][j][h-1][k],s[i][j-1][h][k-1]
s[i-1][j][h][k-1],s[i][j-1][h-1][k]
(i,j为第一人,h,k为第二人)
则可得状态转移方程:
第一个人:s[i][j][h][k]=max(tmp1,tmp2)+a[i][j];
第二个人:s[i][j][h][k]+=a[h][k];
注意:若i=h&&j=k,则只能加一次。
【代码】:
#include<bits/stdc++.h>
using namespace std;
int n,x,y,val,maxn,f[][][][],a[][];//a[i][j][k][l]表示两个人同时走,一个走i,j 一个走k,l
int main(){
cin>>n;
memset(a,,sizeof a); while(cin>>x>>y>>val){
if(x==&&y==&&val==)break;
a[x][y]=val;
} for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
for(int k=;k<=n;k++){
for(int l=;l<=n;l++){
int op1=max(f[i-][j][k-][l],f[i][j-][k][l-]);
int op2=max(f[i-][j][k][l-],f[i][j-][k-][l]);
f[i][j][k][l]=max(op1,op2)+a[i][j]+a[k][l];
if(i==k&&j==l)f[i][j][k][l]-=a[i][j];
}
}
}
}
printf("%d\n",f[n][n][n][n]);
return ;
}
四维dp
洛谷 P1004 方格取数 【多线程DP/四维DP/】的更多相关文章
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
- 洛谷P1004 方格取数-四维DP
题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...
- 洛谷P1004 方格取数
网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...
- 四维动规 洛谷P1004方格取数
分析:这个题因为数据量非常小,可以直接用四维的DP数组 dp[i][j][k][l]表示第一个人走到位置(i,j),第二个人走到位置[k][l]时所取的数的最大和 状态转移方程可以轻松得出为:dp[i ...
- 洛谷 - P1004 - 方格取数 - 简单dp
https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...
- 洛谷 P1004 方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- 【动态规划】洛谷P1004方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
随机推荐
- Emmet 快捷支持
1.https://docs.emmet.io/ [快捷demo视频演示] 2.https://docs.emmet.io/cheat-sheet/ [更多Emmet快捷案例示范]
- CCPC-Wannafly Summer Camp 2019 全记录
// 7.19-7.29 东北大学秦皇岛校区十天训练营,题目都挂在了Vjudge上.训练期间比较忙,没空更博总结,回来继续补题消化. Day1 这天授课主题是简单图论,节奏挺好,wls两小时理完图论里 ...
- springmvc前端控制器拦截路径的配置报错404
1.拦截"/",可以实现现在很流行的REST风格.很多互联网类型的应用很喜欢这种风格的URL.为了实现REST风格,拦截除了jsp的所有. 2.拦截/*,拦截所有访问,会导致404 ...
- mysql80版本—yum安装—图文全过程
这是官网的Quick Giude:https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/ 以下为自己安装的步骤: 第一步:下载.rpm安装包 ...
- WPF+MVVM+EF示例1
实现了那些功能,先看看效果图: 项目工程目录: 接下来开始具体的步骤: 第一步:在VS中新建工程 第二步:使用NuGet 安装EntityFramework 第三步:使用NuGet 安装EntityF ...
- 操作系统 Lab1(2)
中断很久,一看发现又多了一些内容. 打算完成了 Lab1 challenge 1 中断像量表设置的时候我们需要设置一个用于系统调用的 trap门 也就是 利用中断切换特权级 To kernel 调用 ...
- C开发系列-预处理指令
简介 OC程序执行过程,在源代码编译成0跟1的二进制文件之前.执行的指令称之为预处理指令. 所有的预处理指令都是以#开头.#import也是预处理指令.预处理指令主要分为三种 宏定义 条件编译 文件包 ...
- Markdown的入门教程,非常的使用
原文链接: https://www.jianshu.com/p/20e82ddb37cb 链接地址 点我 粘贴进来的内容竟然没有图片,好气呦 目录 概述 简介 官方文档 Markdown编 ...
- JZOJ2368 【SDOI2011】黑白棋
题目 题目大意 在一个1*n的棋盘上,有黑棋和白棋交错分布,每次,一个人可以移动自己的ddd颗旗子. 问先手必胜的方案数. 思考历程 在一开始,我就有点要放弃的念头. 因为这题是一道博弈问题. 我是非 ...
- ionic view 视图
ionic view 方法 $ionicView.loaded 视图已经被加载了.这事件只发生一次当视图被创建并添加到Dom中.当跳出页面并且被缓存了的话,再次访问这个页面时这个时间将不会被激活.L ...