POJ3237 Tree 树链剖分 边权

传送门:http://poj.org/problem?id=3237

题意:

n个点的,n-1条边

修改单边边权

将a->b的边权取反

查询a->b边权最大值

题解:

修改边权就查询点的深度大的点,用大的点去存这条边的边权,其余的就和点权的是一样的了

取反操作用线段树维护,区间最大值取反就是区间最小值,区间最小值取反就是区间最大值

所以维护两颗线段树即可,lazy标记表示覆盖单边的边权

代码:

#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct EDGE {
int v, nxt, w;
} edge[maxn << 1];
int head[maxn], tot;
void add_edge(int u, int v, int w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].nxt = head[u];
head[u] = tot++;
}
int sz[maxn], dep[maxn], son[maxn], id[maxn], Rank[maxn], cnt, fa[maxn], top[maxn];
int d[maxn];
void dfs1(int u, int f, int cnt) {
fa[u] = f;
dep[u] = cnt;
sz[u] = 1;
son[u] = 0;
int tmp = 0;
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if(v != f) {
dfs1(v, u, cnt + 1);
if(tmp < sz[v]) {
son[u] = v;
tmp = sz[v];
}
sz[u] += sz[v];
} }
}
void dfs2(int u, int tp) {
top[u] = tp;
id[u] = ++cnt;
Rank[cnt] = u;
if(son[u]) dfs2(son[u], tp);
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if(v == fa[u]) continue;
if(v == son[u]) {
d[id[v]] = edge[i].w;
continue;
}
dfs2(v, v);
d[id[v]] = edge[i].w;
}
}
void prebuild() {
dfs1(1, 0, 0);
dfs2(1, 1);
} int Max[maxn << 2];
int Min[maxn << 2];
// int sum[maxn<<2];
int lazy[maxn]; void push_up(int rt) {
Max[rt] = max(Max[ls], Max[rs]);
Min[rt] = min(Min[ls], Min[rs]); }
void build(int l, int r, int rt) {
lazy[rt] = 1;
if(l == r) {
Max[rt] = Min[rt] = d[l];
return;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
push_up(rt);
}
void push_down(int rt) {
if(lazy[rt] == -1) {
lazy[ls] = -lazy[ls];
lazy[rs] = -lazy[rs];
lazy[rt] = 1;
swap(Max[ls], Min[ls]);
Max[ls] *= -1;
Min[ls] *= -1;
swap(Max[rs], Min[rs]);
Max[rs] *= -1;
Min[rs] *= -1;
}
}
void update_pos(int pos, int val, int l, int r, int rt) {
if(l == r) {
lazy[rt] = 1;
Max[rt] = Min[rt] = val;
return;
}
push_down(rt);
int mid = (l + r) >> 1;
if(pos <= mid) update_pos(pos, val, lson);
else update_pos(pos, val, rson);
push_up(rt);
}
void update(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
lazy[rt] = -lazy[rt];
swap(Max[rt], Min[rt]);
Max[rt] *= -1;
Min[rt] *= -1;
return;
}
push_down(rt);
int mid = (l + r) >> 1;
if(L <= mid) update(L, R, lson);
if(R > mid) update(L, R, rson);
push_up(rt);
}
int query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
return Max[rt];
}
push_down(rt);
int mid = (l + r) >> 1;
int ans = -INF;
if(L <= mid) ans = max(ans, query(L, R, lson));
if(R > mid) ans = max(ans, query(L, R, rson));
return ans;
}
void change(int u, int v) {
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) {
swap(u, v);
}
update(id[top[u]], id[u], 1, cnt, 1);
u = fa[top[u]];
}
if(u != v) {
if(dep[u] > dep[v]) swap(u, v);
update(id[son[u]], id[v], 1, cnt, 1);
}
}
void Query(int u, int v) {
int ans = -INF;
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) {
swap(u, v);
}
ans = max(ans, query(id[top[u]], id[u], 1, cnt, 1));
u = fa[top[u]];
}
if(u != v) {
if(dep[u] > dep[v]) swap(u, v);
ans = max(ans, query(id[son[u]], id[v], 1, cnt, 1));
}
printf("%d\n", ans);
}
int u[maxn], v[maxn], c[maxn]; int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
int n, T;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
memset(head, -1, sizeof(head));
tot = cnt = 0;
for(int i = 1; i < n; i++) {
scanf("%d%d%d", &u[i], &v[i], &c[i]); //要用数组保存
add_edge(u[i], v[i], c[i]);
add_edge(v[i], u[i], c[i]);
}
prebuild();
build(1, cnt, 1);
char op[20];
int a, b;
while(1) {
scanf("%s", op);
if(op[0] == 'D') break;
scanf("%d%d", &a, &b);
if(op[0] == 'C') {
int tmp = dep[u[a]] > dep[v[a]] ? u[a] : v[a]; //找出深度大的那个点
update_pos(id[tmp], b, 1, cnt, 1); //更新进入深度大的点那条边
} else if(op[0] == 'N') change(a, b);
else if(op[0] == 'Q') Query(a, b);
}
}
return 0; }

POJ3237 Tree 树链剖分 边权的更多相关文章

  1. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  2. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  5. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  6. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  7. HDU3669 Aragorn's Story 树链剖分 点权

    HDU3669 Aragorn's Story 树链剖分 点权 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: n个点的,m条边,每个点都 ...

  8. poj3237树链剖分边权+区间取负

    树链剖分+线段树lazy-tag在树链上操作时千万不要写错.. /* 树链剖分+线段树区间变负 */ #include<iostream> #include<cstring> ...

  9. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

随机推荐

  1. Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第九章:贴图

    原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第九章:贴图 代码工程地址: https://github.com/j ...

  2. 详解 CALayer 和 UIView 的区别和联系

    http://www.cocoachina.com/ios/20150828/13244.html 作者:@武蕴牛x 授权本站转载. 前言 前面发了一篇iOS 面试的文章,在说到 UIView 和 C ...

  3. oracle表内连接和外连接

    n  概述 表连接分为内连接和外连接 n  内连接 内连接实际上就是利用where子句对两张表形成的笛卡尔集进行筛选,我们前面学习的查询都是内连接,也是在开发过程中用的最多的连接查询. 基本语法: s ...

  4. Nuxt.js打造旅游网站第3篇_登录页面的编写

    主要知识点: 1.使用vuex/store管理数据 2.登录注册逻辑 3.Nuxt的本地存储 1.登录页面 1.1登录页面布局 替换pages/user/login.vue的代码如下 <temp ...

  5. hdu 6197 2017 ACM/ICPC Asia Regional Shenyang Online array array array【最长不上升子序列和最长不下降子序列】

    hdu 6197 题意:给定一个数组,问删掉k个字符后数组是否能不减或者不增,满足要求则是magic array,否则不是. 题解:队友想的思路,感觉非常棒!既然删掉k个后不增或者不减,那么就先求数组 ...

  6. @codeforces - 141E@ Clearing Up

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 N 个点 M 条边的图,每条为黑色或者白色. 现在让你 ...

  7. 归并排序及应用 (nyoj 117 求逆序数)

    求逆序数 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中 ...

  8. hdu 4629 Burning (扫描线)

    Problem - 4629 以前写过PSLG模拟的版本,今天写了一下扫描线做这题. 其实这题可以用set存线段来做,类似于判断直线交的做法.不过实现起来有点麻烦,于是我就直接暴力求交点了. 代码如下 ...

  9. Python深入:01内存管理

            在Python中,一切都是指针. 一:对象三特性         所有的Python对象都有三个特性:身份,类型和值.         身份:每一个对象都有一个唯一的身份标识,任何对象 ...

  10. protobuf_1

    我使用的是最新版本的protobuf(protobuf-2.6.1),编程工具使用VS2010.简单介绍下google protobuf: google protobuf 主要用于通讯,是google ...