[SDOI2017] 新生舞会 - 二分图最大权匹配,分数规划,二分答案
有一个二分图,每个部都有 \(n\) 个点,每条边有两个参数 \(a_e, b_e\),求一种匹配,使得 \(\sum a_i / \sum b_i\) 最大
Solution
显然的分数规划,考虑二分一个答案 \(mid\),那么设每条边的权值为 \(c_i = a_i - kb_i\)
然后跑二分图最大权匹配,如果跑出来答案大于 \(0\) 就表明 OK,可以将答案调大,否则调小。
KM 在稠密的时候比 MCMF 跑的快点,对这题的话其实都能过吧
#include <bits/stdc++.h>
using namespace std;
#define reset(x) memset(x,0,sizeof x)
#define reset3f(x) memset(x,0x3f,sizeof x)
#define int long long
#define ll long long
// Input: g[v][u] (v in II, u in I)
// Method: solve(n1,n2)
// Output: ans, mat[u] (u in I)
namespace km {
const double inf=1e+9;
const int MX=405;
int n,m;
int py[MX],vy[MX],pre[MX];
double slk[MX],g[MX][MX],kx[MX],ky[MX],ans;
int mat[MX];
void clear() {
n=m=0;
reset(py); reset(vy); reset(pre);
reset(slk); reset(g); reset(kx); reset(ky);
}
void KM(){
int i,j,k,x,p=0;
double d,t;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
kx[i]=max(kx[i],g[i][j]);
for(i=1;i<=n;i++){
memset(vy,0,sizeof(int)*(n+1));
for(j=0;j<=n;j++) slk[j]=inf;
memset(pre,0,sizeof(int)*(n+1));
for(py[k=0]=i;py[k];k=p){
d=inf;vy[k]=1;x=py[k];
for(j=1;j<=n;j++)if(!vy[j]){
if((t=kx[x]+ky[j]-g[x][j])<slk[j])slk[j]=t,pre[j]=k;
if(slk[j]<d)d=slk[j],p=j;
}
for(j=0;j<=n;j++)
if(vy[j])kx[py[j]]-=d,ky[j]+=d;
else slk[j]-=d;
}
for(;k;k=pre[k])py[k]=py[pre[k]];
}
}
void solve(int n1,int n2){
n=max(n1,n2);
KM();
ans=0;
for(int i=1;i<=n;i++)ans+=kx[i]+ky[i];
for(int i=1;i<=n1;i++)mat[i]=(g[py[i]][i]?py[i]:0);
}
}
int n;
double a[105][105],b[105][105];
signed main() {
cin>>n;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) cin>>a[i][j];
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) cin>>b[i][j];
double l=0,r=1e+9;
while(r-l>1e-8) {
double mid=(l+r)/2;
km::clear();
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
km::g[j][i]=a[i][j]-mid*b[i][j];
}
}
km::solve(n,n);
if(km::ans>0) l=mid;
else r=mid;
}
printf("%.6lf",l);
}
[SDOI2017] 新生舞会 - 二分图最大权匹配,分数规划,二分答案的更多相关文章
- 【Luogu】P3705新生舞会(费用流+分数规划+二分答案)
题目链接 本来以为自己可以做出来,结果……打脸了 (貌似来wc立了好几个flag了,都没竖起来) 不过乱蒙能蒙出一个叫“分数规划”的东西的式子还是很开心的 观察$C=\frac{a_{1}+a_{2} ...
- [BJOI2019]奥术神杖——AC自动机+DP+分数规划+二分答案
题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这 ...
- poj2728 生成树01分数规划 (二分答案)
给定整数序列a,b,求出下式的最大值 sum{ai*xi}/sum{bi*xi},xi=0|1 通俗来说,就是选出一些整数对(ai,bi),使得选出的a之和与选出的b之和商最大化 二分答案L,即选出的 ...
- BZOJ 4819 [Sdoi2017]新生舞会 ——费用流 01分数规划
比值最大 分数规划 二分答案之后用费用流进行验证. 据说标称强行乘以1e7换成了整数的二分. 不过貌似实数二分也可以过. #include <map> #include <cmath ...
- hdu6070(分数规划/二分+线段树区间更新,区间最值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...
- [Sdoi2017]新生舞会 [01分数规划 二分图最大权匹配]
[Sdoi2017]新生舞会 题意:沙茶01分数规划 貌似\(*10^7\)变成整数更科学 #include <iostream> #include <cstdio> #inc ...
- BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流
BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流 Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞 ...
- [BZOJ4819][SDOI2017]新生舞会(分数规划+费用流,KM)
4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1097 Solved: 566[Submit][Statu ...
- 【BZOJ 4819】 4819: [Sdoi2017]新生舞会 (0-1分数规划、二分+KM)
4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 601 Solved: 313 Description 学校 ...
随机推荐
- WinFrom 在Devexpress里用GridControl和DataNavigtor进行分页
1,分页嘛先要有个SQL 程序才能写下去 先提供下SQL的思路,对于分页的SQL我之前帖子有介绍,就不一一介绍了 select top pageSize * --显示数量 from (select r ...
- 现在连Linux都搞不懂,当初我要是这么学习操作系统就好了!
原创声明 本文首发于微信公众号[程序员黄小斜] 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 本文思维导图 简介 学习编程,操作系统是你必须要掌握的基础知识,那么操作系统到底是什么呢? 这还 ...
- $.getJSON获取json数据失败
首先简单介绍下 $.ajax $.get $.post $.getJSON 的区别和用法 $.ajax中有一个type属性,专门用来指定是get请求还是post请求的分别对应的就是$.get和$ ...
- linux中网络命令
write 解释 命令名称:write 命令所在路径:/usr/bin/write 执行权限:所有用户 功能描述:给用户发信息,以Ctrl+D保存结束 语法 write <用户名> 示例 ...
- C#上位机之—WinForm实现Socket异步通讯示例
工作中常用到的一些知识点,总是用完就忘,第一次尝试用博客记录下来,以备后用: Socket通讯,Socket(套接字)是基于TCP/IP通讯方式的封装好的类,调用时需要添加下面的服务引用: using ...
- python基础之字典功能
python中字典是个很重要的功能,使用键值(key-value)存储,具有极快的查找速度.值得注意的是,字典的key要为不可变对象,比如字符串.字母,但不能是可变的,比如列表等. 1.字典的定义: ...
- 使用Teigha.net读取CAD的常用功能模块
Teigha中实体旋转 代码: using (var trans = database.TransactionManager.StartTransaction()) { Entity ent = tr ...
- 【macOS使用技巧】使用空格键快速预览文件内容
Quickview 是mac系统上一个强大的预览功能, 可以预览 mp4 mov等音频文件, 当然图片.文本.也都可以进行预览. 在系统中如果你希望快速浏览一下文件而不想打开的文件的话只要选择文件然后 ...
- 网络流最大流——dinic算法
前言 网络流问题是一个很深奥的问题,对应也有许多很优秀的算法.但是本文只会讲述dinic算法 最近写了好多网络流的题目,想想看还是写一篇来总结一下网络流和dinic算法以免以后自己忘了... 网络流问 ...
- 搁置:vue-element-admin
初衷 了解桌面应用类前端搭建的解决方案 -------------------------------------------------------------------------------- ...