[SDOI2017] 新生舞会 - 二分图最大权匹配,分数规划,二分答案
有一个二分图,每个部都有 \(n\) 个点,每条边有两个参数 \(a_e, b_e\),求一种匹配,使得 \(\sum a_i / \sum b_i\) 最大
Solution
显然的分数规划,考虑二分一个答案 \(mid\),那么设每条边的权值为 \(c_i = a_i - kb_i\)
然后跑二分图最大权匹配,如果跑出来答案大于 \(0\) 就表明 OK,可以将答案调大,否则调小。
KM 在稠密的时候比 MCMF 跑的快点,对这题的话其实都能过吧
#include <bits/stdc++.h>
using namespace std;
#define reset(x) memset(x,0,sizeof x)
#define reset3f(x) memset(x,0x3f,sizeof x)
#define int long long
#define ll long long
// Input: g[v][u] (v in II, u in I)
// Method: solve(n1,n2)
// Output: ans, mat[u] (u in I)
namespace km {
const double inf=1e+9;
const int MX=405;
int n,m;
int py[MX],vy[MX],pre[MX];
double slk[MX],g[MX][MX],kx[MX],ky[MX],ans;
int mat[MX];
void clear() {
n=m=0;
reset(py); reset(vy); reset(pre);
reset(slk); reset(g); reset(kx); reset(ky);
}
void KM(){
int i,j,k,x,p=0;
double d,t;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
kx[i]=max(kx[i],g[i][j]);
for(i=1;i<=n;i++){
memset(vy,0,sizeof(int)*(n+1));
for(j=0;j<=n;j++) slk[j]=inf;
memset(pre,0,sizeof(int)*(n+1));
for(py[k=0]=i;py[k];k=p){
d=inf;vy[k]=1;x=py[k];
for(j=1;j<=n;j++)if(!vy[j]){
if((t=kx[x]+ky[j]-g[x][j])<slk[j])slk[j]=t,pre[j]=k;
if(slk[j]<d)d=slk[j],p=j;
}
for(j=0;j<=n;j++)
if(vy[j])kx[py[j]]-=d,ky[j]+=d;
else slk[j]-=d;
}
for(;k;k=pre[k])py[k]=py[pre[k]];
}
}
void solve(int n1,int n2){
n=max(n1,n2);
KM();
ans=0;
for(int i=1;i<=n;i++)ans+=kx[i]+ky[i];
for(int i=1;i<=n1;i++)mat[i]=(g[py[i]][i]?py[i]:0);
}
}
int n;
double a[105][105],b[105][105];
signed main() {
cin>>n;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) cin>>a[i][j];
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) cin>>b[i][j];
double l=0,r=1e+9;
while(r-l>1e-8) {
double mid=(l+r)/2;
km::clear();
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
km::g[j][i]=a[i][j]-mid*b[i][j];
}
}
km::solve(n,n);
if(km::ans>0) l=mid;
else r=mid;
}
printf("%.6lf",l);
}
[SDOI2017] 新生舞会 - 二分图最大权匹配,分数规划,二分答案的更多相关文章
- 【Luogu】P3705新生舞会(费用流+分数规划+二分答案)
题目链接 本来以为自己可以做出来,结果……打脸了 (貌似来wc立了好几个flag了,都没竖起来) 不过乱蒙能蒙出一个叫“分数规划”的东西的式子还是很开心的 观察$C=\frac{a_{1}+a_{2} ...
- [BJOI2019]奥术神杖——AC自动机+DP+分数规划+二分答案
题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这 ...
- poj2728 生成树01分数规划 (二分答案)
给定整数序列a,b,求出下式的最大值 sum{ai*xi}/sum{bi*xi},xi=0|1 通俗来说,就是选出一些整数对(ai,bi),使得选出的a之和与选出的b之和商最大化 二分答案L,即选出的 ...
- BZOJ 4819 [Sdoi2017]新生舞会 ——费用流 01分数规划
比值最大 分数规划 二分答案之后用费用流进行验证. 据说标称强行乘以1e7换成了整数的二分. 不过貌似实数二分也可以过. #include <map> #include <cmath ...
- hdu6070(分数规划/二分+线段树区间更新,区间最值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...
- [Sdoi2017]新生舞会 [01分数规划 二分图最大权匹配]
[Sdoi2017]新生舞会 题意:沙茶01分数规划 貌似\(*10^7\)变成整数更科学 #include <iostream> #include <cstdio> #inc ...
- BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流
BZOJ_4819_[Sdoi2017]新生舞会_01分数规划+费用流 Description 学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴.有n个男生和n个女生参加舞 ...
- [BZOJ4819][SDOI2017]新生舞会(分数规划+费用流,KM)
4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1097 Solved: 566[Submit][Statu ...
- 【BZOJ 4819】 4819: [Sdoi2017]新生舞会 (0-1分数规划、二分+KM)
4819: [Sdoi2017]新生舞会 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 601 Solved: 313 Description 学校 ...
随机推荐
- StarUML之八、StarUML的Entity-Relationship Diagram(实体关系图)示例
数据库表关系设计也是常有场景,本章介绍如何设计一个实体关系图 1:新建项目,在Model Explore中Add Diagram | ER Diagram到指定的元素中: 2:从Toolbox中创建E ...
- Linux学习Day6:编写Shell脚本
Shell脚本命令的工作方式有两种: 交互式(Interactive):用户每输入一条命令就立即执行. 批处理(Batch):由用户事先编写好一个完整的Shell脚本,Shell会一次性执行脚本中诸多 ...
- PMP--1.5 项目管理描述
项目所处的环境将影响每个项目管理过程的实施方式以及项目制约因素的优先顺序. 一. 管理一个项目的过程 管理一个项目通常包括(但不限于): 1. 识别项目需求 2. 处理相关方的各种需要.关注和期望 ...
- Python 爬取必应壁纸
import re import os import requests from time import sleep headers = { "User-Agent": (&quo ...
- 广度优先搜索BFS---求出矩阵中“块”的个数
题目: 给出一个 m x n 的矩阵,矩阵中的元素为0或1.如果矩阵中有若干个 1是相邻的,那么称这些1构成了一个“块”.求给定的矩阵中“块”的个数. 0 1 1 1 0 0 1 0 0 1 0 0 ...
- python类详细说明、常用内置方法和self的作用
一.类的定义 在Python中,一切皆对象,即便是类本身,也是一种type类型的特殊对象. class Person: def __init__(self, name, age): self.name ...
- Mac 终端 Tomcat 环境配置过程
Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun 和其他一些公司及个人共同开发而成.Tomc ...
- mac 电脑画图软件相关
sketchbook 免费但是不太好用 sketch, https://www.newasp.net/soft/327640.html 注意:安装前,请开启任何来源.OS X 10.12 及以上版本请 ...
- TypeScript(进行中)
https://ts.xcatliu.com 简介 什么是 TypeScript 即使不显式的定义类型,也能够自动做出类型推论 即使第三方库不是用 TypeScript 写的,也可以编写单独的类型文件 ...
- 题解【洛谷P2730】魔板 Magic Squares
题面 首先我们可以发现,在每一次 BFS 时按照 \(A→B→C\) 的顺序枚举遍历肯定是字典序最小的. 然后就是普通的 BFS 了. 我们考虑使用 \(\text{STL map}\) 来存储起点状 ...