首先想到用二分来判断

不是平方数的倍数,即没有次数>=2的质因子
显然用容斥原理,即所有答案-1个质因子的平方的所有倍数+2个质因子的所有平方倍...
等价于对于每个数,如果它有奇数个质因子,那么其贡献系数是-1,反之则是1,

如果自己本身有平方因子(比如2*2*3),那么其贡献系数是0,因为已经被前面的筛掉了(1的时候+1,2,3的时候-1,2*3的时候+1,最后已经成为0了),根本不用去管它

那么可以发现i的系数恰好是mu[i]

其实由这题可以发现mu[i]函数的意义,即容斥系数

本题用容斥筛出i的倍数时 对应的系数恰好是 mu[i]是因为:mu[i]的本质就是来筛i的倍数的

设f(n)是原函数,g(n)是和函数

mu[p1]=-1 是因为 f(n)必须要减去一个g(n/p1)

mu[p1*p2]=1是因为 f(n)=g(n)-g(n/p1)-g(n/p2),多减掉了一个g(n/p1/p2)

mu[p1^k*p2]=0 是因为 f(n)=g(n)-g(n/p1)-g(n/p2)+g(n/p1/p2) 里 的g(n/p1^k/p2)已经被做成0了

  g(n/p1的所有倍数)系数-1,g(n/p2的所有倍数)系数-1,g(n/p1/p2)的所有倍数系数+1,所以g(n/p1/p2的所有倍数)的系数最后变成了0,包括g(n/p1/p1/p2)之类的系数

所以不需要再加减了

#define N 100000
using namespace std;
typedef long long LL;
const LL inf = (1LL<<)-;
const int MAXN = ;
LL l,r;
int ans;
int mobius[MAXN],k;
int prime[MAXN],cnt;
bool ok[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void init(){
mobius[]=;
for(int i=;i<=N;i++) {
if(!ok[i]) prime[++cnt]=i,mobius[i]=-;
for(int j=;j<=cnt && prime[j]*i<=N;j++) {
ok[i*prime[j]]=;
if(i%prime[j]) mobius[i*prime[j]]=-mobius[i];
else { mobius[i*prime[j]]=; break; }
}
}
} inline bool check(LL x){
LL div=sqrt(x); int tot=;
for(int i=;i<=div;i++) {
tot+=mobius[i] * (x/(i*i));
}
//tot=x-tot;
if(tot>=k) return true;
return false;
} inline void work(){
init(); int T=getint(); LL mid;
while(T--) {
k=getint(); l=; r=inf; ans=inf;
while(l<=r) {
mid=(l+r)/;
if(check(mid)) ans=mid,r=mid-;
else l=mid+;
}
printf("%d\n",ans);
}
} int main()
{
work();
return ;
}

二分+mu函数实质及应用(原理)!——bzoj2440好题的更多相关文章

  1. 二分检索函数lower_bound()和upper_bound()

    二分检索函数lower_bound()和upper_bound() 一.说明 头文件:<algorithm> 二分检索函数lower_bound()和upper_bound() lower ...

  2. 指针数组,数组指针,函数指针,main函数实质,二重指针,函数指针作为參数,泛型函数

     1.指针数组 数组里面的每一个元素都是指针. 指针数组的案比例如以下: 易犯错误: 2.数组指针 归根结底还是指针,仅仅是取*的时候可以取出一整个数组出来. 数组指针:(一个指针指向了数组.一般 ...

  3. STL二分查找函数的应用

    应用二分查找的条件必须是数组有序! 其中二分查找函数有三个binary_serch,upper_bound,lower_bound 测试数组 int n1[]={1,2,2,3,3,4,5}; int ...

  4. [探究] $\mu$函数的性质应用

    参考的神仙An_Account的blog,膜一下. 其实就是一类反演问题可以用\(\mu\)函数的性质直接爆算出来. 然后其实性质就是一个代换: \[\sum_{d|n}\mu(d)=[n=1]\] ...

  5. 【整体二分+莫比乌斯函数+容斥原理】BZOJ2440

    [题目大意] 求第k个不是完全平方数或完全平方数整数倍的数. [思路] 由于μ(i)*(n/i^2)=n,可以直接从1开始,得出非完全平方数/完全平方数倍数的数的个数 注意一下二分的写法,这里用的是我 ...

  6. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  7. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  8. 【高级】C++中虚函数机制的实现原理

    多态是C++中的一个重要特性,而虚函数却是实现多态的基石.所谓多态,就是基类的引用或者指针可以根据其实际指向的子类类型而表现出不同的功能.这篇文章讨论这种功能的实现原理,注意这里并不以某个具体的编译器 ...

  9. python基础----多态与多态性、super函数用法、继承原理

    一.多态与多态性                                                                        ㈠多态: 多态指的是一类事物有多种形态, ...

随机推荐

  1. express 使用art-template模板引擎

    下载express-art-template art-template - app.js中配置 - 注册一个模板引擎 - `app.engine('.html',express-art-templat ...

  2. java——文件

  3. bzoj1001 [ICPC-Beijing 2006]狼抓兔子

    我满心以为本题正解为最短路,结果到处都是最大流…… 几乎所有的都写了什么“对偶图”跑最短路,但我真的不知道什么叫做对偶图---------------------------------------- ...

  4. webpack 添加eslint代码审查

    1). 添加包 npm install eslint --save-dev npm install eslint-loader --save-dev npm install eslint-plugin ...

  5. nteract 使用教程

    安装 直接去官网下载 一路回车 官网 建立python虚拟环境 和我们平时一样 不同的是在建立完之后 要安装一个kernel Using Python3 with pip and a virtual ...

  6. thinkphp 使用redis 整理(二) mark 一下

    参考手册   http://www.cnblogs.com/weafer/archive/2011/09/21/2184059.html redis  几种数据类型选择,参考 :  https://b ...

  7. python 调用redis

    #!/usr/bin/env python #_*_ coding:UTF-8 _*_ import redis import pickle #普通连接 ''' db="db1" ...

  8. 2019杭电多校第三场hdu6609 Find the answer(线段树)

    Find the answer 题目传送门 解题思路 要想变0的个数最少,显然是优先把大的变成0.所以离散化,建立一颗权值线段树,维护区间和与区间元素数量,假设至少减去k才能满足条件,查询大于等于k的 ...

  9. 2019河北省大学生程序设计竞赛(重现赛)B 题 -Icebound and Sequence ( 等比数列求和的快速幂取模)

    题目链接:https://ac.nowcoder.com/acm/contest/903/B 题意: 给你 q,n,p,求 q1+q2+...+qn 的和 模 p. 思路:一开始不会做,后面查了下发现 ...

  10. sed 删除含有某个字符串的行 (在文件txt)

    #删除a.txt中含有“aaa”的行 sed -i “/aaa/d” a.txt