CUDA学习(四)之使用全局内存进行归约求和(一个包含N个线程的线程块)
问题:使用CUDA进行数组元素归约求和,归约求和的思想是每次循环取半。
详细过程如下:
假设有一个包含8个元素的数组,索引下标从0到7,现通过3次循环相加得到这8个元素的和,使用一个间隔变量,该间隔变量随循环次数改变(累乘)。
第一次循环,间隔变量stride等于1,将0与1号元素、2与3号元素、4与5号元素、6与7号元素相加并将结果分别保存在0、2、4、6号元素中(图中红色框所示)。
第二次循环,间隔变量stride等于2,将0与2号元素、4与6号元素相加并将结果分别保存在0、4号元素中(图中红色框所示)。
第三次循环,间隔变量stride等于4,将0与4号元素相加并将结果保存在0号元素中(图中红色框所示)。
三次循环过后,整个数组元素相加之和就保存在数组0号元素中。

代码如下:
#pragma once
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "device_functions.h" #include <iostream> using namespace std; const int N = 128; //数组长度 __global__ void d_ParallelTest(double *Para)
{
int tid = threadIdx.x;
//----随循环次数的增加,stride逐次翻倍(乘以2)-----------------------------------------------------
for (int stride = 1; stride < blockDim.x; stride *= 2)
{
if (tid % (2 * stride) == 0)
{
Para[tid] += Para[tid + stride]; //对应上图中红色框的元素
}
__syncthreads();
} } void ParallelTest()
{
double *Para;
cudaMallocManaged((void **)&Para, sizeof(double) * N); //统一内存寻址,CPU和GPU都可以使用的数组 double ParaSum = 0;
for (int i = 0; i<N; i++)
{
Para[i] = (i + 1) * 0.1; //数组赋值
ParaSum += Para[i]; //CPU端数组累加
} cout << " CPU result = " << ParaSum << endl; //显示CPU端结果
double d_ParaSum; d_ParallelTest << < 1, N >> > (Para); //调用核函数(一个包含N个线程的线程块) cudaDeviceSynchronize(); //同步
d_ParaSum = Para[0]; //从累加过后数组的0号元素得出结果
cout << " GPU result = " << d_ParaSum << endl; //显示GPU端结果 } int main() {
//并行归约
ParallelTest(); //调用归约函数 system("pause");
return 0;
}
结果如下所示(CPU和GPU计算结果一致):

CUDA学习(四)之使用全局内存进行归约求和(一个包含N个线程的线程块)的更多相关文章
- 【CUDA 基础】4.0 全局内存
title: [CUDA 基础]4.0 全局内存 categories: - CUDA - Freshman tags: - 全局内存 - CUDA内存模型 - CUDA内存管理 - 全局内存编程 - ...
- CUDA学习(五)之使用共享内存(shared memory)进行归约求和(一个包含N个线程的线程块)
共享内存(shared memory)是位于SM上的on-chip(片上)一块内存,每个SM都有,就是内存比较小,早期的GPU只有16K(16384),现在生产的GPU一般都是48K(49152). ...
- 【CUDA 基础】5.3 减少全局内存访问
title: [CUDA 基础]5.3 减少全局内存访问 categories: - CUDA - Freshman tags: - 共享内存 - 归约 toc: true date: 2018-06 ...
- CUDA学习(七)之使用CUDA内置API计时
问题:对于使用GPU计算时,都想知道kernel函数运行所耗费的时间,使用CUDA内置的API可以方便准确的获得kernel运行时间. 在CPU上,可以使用clock()函数和GetTickCount ...
- CUDA学习笔记(四)——CUDA性能
转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5h.html 四.CUDA性能 CUDA中的block被划分成一个个的warp,在GeForce880 ...
- CUDA学习笔记(三)——CUDA内存
转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5f.html 结合lec07_intro_cuda.pptx学习 内存类型 CGMA: Compute ...
- cuda学习3-共享内存和同步
为什么要使用共享内存呢,因为共享内存的访问速度快.这是首先要明确的,下面详细研究. cuda程序中的内存使用分为主机内存(host memory) 和 设备内存(device memory),我们在这 ...
- 【CUDA 基础】5.4 合并的全局内存访问
title: [CUDA 基础]5.4 合并的全局内存访问 categories: - CUDA - Freshman tags: - 合并 - 转置 toc: true date: 2018-06- ...
- CUDA学习(六)之使用共享内存(shared memory)进行归约求和(M个包含N个线程的线程块)
在https://www.cnblogs.com/xiaoxiaoyibu/p/11402607.html中介绍了使用一个包含N个线程的线程块和共享内存进行数组归约求和, 基本思路: 定义M个包含N个 ...
随机推荐
- eclipse中部署web项目时报错java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderListener的解决方法
解决方案: 1.右键点击项目--选择Properties,选择Deployment Assembly,在右边点击Add按钮,在弹出的窗口中选择Java Build Path Entries 2.点击N ...
- java中如何自动获取电脑的ip地址
String ip=InetAddress.getLocalHost().getHostAddress().toString(); 可以写一个main方法测试一下.
- 使用eclipse创建第一个SpringBoot项目
1.new->maven->maven project, 勾选 Create a simple project, 下一个页面中填入group id(项目组织唯一标识, 如org.ap ...
- 20191031-6beta week 1/2 Scrum立会报告+燃尽图 04
此作业要求参见https://edu.cnblogs.com/campus/nenu/2019fall/homework/9914 git地址:https://e.coding.net/Eustia/ ...
- 洛谷$P4585\ [FJOI2015]$火星商店问题 线段树+$trie$树
正解:线段树+$trie$树 解题报告: 传送门$QwQ$ $umm$题目有点儿长我先写下题目大意趴$QwQ$,就说有$n$个初始均为空的集合和$m$次操作,每次操作为向某个集合内加入一个数$x$,或 ...
- 洛谷$P$2235 $Kathy$函数 $[HNOI2002]$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$qwq$ $HNOI$的题从02年就这么神了嘛$QAQ$,,, 嗷对了这题如果看出了一个结论就是个数位$dp$板子,,,?但是结论很神我$jio$得挺难看出来的 ...
- Linux下搭建C/C++编程环境
Linux下搭建C/C++编程环境 1.KDevelop下载 wget -O KDevelop.AppImage https://download.kde.org/stable/kdevelop/5. ...
- js的内存泄漏场景、监控以及分析
内存泄漏 Q:什么是内存泄漏? 字面上的意思,申请的内存没有及时回收掉,被泄漏了 Q:为什么会发生内存泄漏? 虽然前端有垃圾回收机制,但当某块无用的内存,却无法被垃圾回收机制认为是垃圾时,也就发生内存 ...
- P3369 【模板】普通平衡树 01Trie树
P3369 [模板]普通平衡树 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入xx数 删除xx数(若有多个相同的数,因只删除一个) 查询xx数的排名(排名 ...
- dfs - 概率
C. Journey time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...