图像GIST特征和LMGIST包的python实现(有github)
1什么是Gist特征
(1) 一种宏观意义的场景特征描述
(2) 只识别“大街上有一些行人”这个场景,无需知道图像中在那些位置有多少人,或者有其他什么对象。
(3) Gist特征向量可以一定程度表征这种宏观场景特征
GIST定义下列五种对空间包络的描述方法
| 空间包络名 | 阐释 |
|---|---|
| 自然度(Degree of Naturalness) | 场景如果包含高度的水平和垂直线,这表明该场景有明显的人工痕迹,通常自然景象具有纹理区域和起伏的轮廓。所以,边缘具有高度垂直于水平倾向的自然度低,反之自然度高。 |
| 开放度(Degree of Openness) | 空间包络是否是封闭(或围绕)的。封闭的,例如:森林、山、城市中心。或者是广阔的,开放的,例如:海岸、高速公路。 |
| 粗糙度(Degree of Roughness) | 主要指主要构成成分的颗粒大小。这取决于每个空间中元素的尺寸,他们构建更加复杂的元素的可能性,以及构建的元素之间的结构关系等等。粗糙度与场景的分形维度有关,所以可以叫复杂度。 |
| 膨胀度(Degree of Expansion) | 平行线收敛,给出了空间梯度的深度特点。例如平面视图中的建筑物,具有低膨胀度。相反,非常长的街道则具有高膨胀度。 |
| 险峻度(Degree of Ruggedness) | 即相对于水平线的偏移。(例如,平坦的水平地面上的山地景观与陡峭的地面)。险峻的环境下在图片中生产倾斜的轮廓,并隐藏了地平线线。大多数的人造环境建立了平坦地面。因此,险峻的环境大多是自然的。 |
2 Gist的实现--LMgist
LMgist的Matlab代码 LMgist Matlab代码
LMgist Matlab代码的使用
% 读取图片
img = imread('demo2.jpg');
% 设置GIST参数
clear param
param.orientationsPerScale = [8 8 8 8]; % number of orientations per scale (from HF to LF)
param.numberBlocks = 4;
param.fc_prefilt = 4;
% 计算GIST
[gist, param] = LMgist(img, '', param);
3 LMgist原理
3.1 LMgist算法主流程
- G1:对输入图片进行预处理 (RGB或RGBA转128x128灰度图)
- G2:对输入图片进行Prefilt处理
- G3:计算图片的Gist向量
3.2 G2 对输入图片进行Prefilt处理
3.2.1 Pad images to reduce boundary artifacts (扩边+去伪影)
\]
\]

图1 sympading操作
3.2.2 Filter (构造滤波器)


\]
3.2.3 Whitening (白化)
\]
3.2.4 Local contrast normalization (局部对比度归一化)
\]
\]
3.2.5 Local contrast normalization (局部对比度归一化)
\]
3.3 计算图片的Gist向量
3.3.1 Pading
\]
3.3.2 FFT
\]
3.3.3 遍历每个Gabor核函数


图2 全局Gist特征的提取
4 LMgist的Python实现
GitHub代码 https://github.com/Kalafinaian/python-img_gist_feature
4.1 提取Gist特征
import cv2
from img_gist_feature.utils_gist import *
s_img_url = "./test/A.jpg"
gist_helper = GistUtils()
np_img = cv2.imread(s_img_url, -1)
print("default: rgb")
np_gist = gist_helper.get_gist_vec(np_img)
print("shape ", np_gist.shape)
print("noly show 10dim", np_gist[0,:10], "...")
print()
print("convert rgb image")
np_gist = gist_helper.get_gist_vec(np_img, mode="rgb")
print("shape ", np_gist.shape)
print("noly show 10dim", np_gist[0,:10], "...")
print()
print("convert gray image")
np_gist = gist_helper.get_gist_vec(np_img, mode="gray")
print("shape ", np_gist.shape)
print("noly show 10dim", np_gist[0,:10], "...")
print()
运行得到的gist特征为
default: rgb
shape (1, 1536)
noly show 10dim [0.02520592 0.05272802 0.05941689 0.05476999 0.13110509 0.13333975
0.29072759 0.16522023 0.25032277 0.36850457] ...
convert rgb image
shape (1, 1536)
noly show 10dim [0.02520592 0.05272802 0.05941689 0.05476999 0.13110509 0.13333975
0.29072759 0.16522023 0.25032277 0.36850457] ...
convert gray image
shape (1, 512)
noly show 10dim [0.10004389 0.20628179 0.17682694 0.16277722 0.10557428 0.14448622
0.29214159 0.11260066 0.16488087 0.28381876] ...
4.2 Gist特征余弦相似距离
下载好github中的代码项目,运行python _test_get_cossim.py

5 LMgist的效果

参考资料
图像GIST特征和LMGIST包的python实现(有github)的更多相关文章
- GIST特征描述符使用
来源:http://www.cnblogs.com/justany/archive/2012/12/06/2804211.html 一种场景特征描述 场景特征描述? 通常的特征描述符都是对图片的局部特 ...
- GIST特征描述符使用(转)
GIST特征描述符使用 一种场景特征描述 场景特征描述? 通常的特征描述符都是对图片的局部特征进行描述的,以这种思路进行场景描述是不可行的. 比如:对于“大街上有一些行人”这个场景,我们必须通过局部特 ...
- 图像的特征工程:HOG特征描述子的介绍
介绍 在机器学习算法的世界里,特征工程是非常重要的.实际上,作为一名数据科学家,这是我最喜欢的方面之一!从现有特征中设计新特征并改进模型的性能,这就是我们进行最多实验的地方. 世界上一些顶级数据科学家 ...
- Kaggle "Microsoft Malware Classification Challenge"——就是沙箱恶意文件识别,有 Opcode n-gram特征 ASM文件图像纹理特征 还有基于图聚类方法
使用图聚类方法:Malware Classification using Graph Clustering 见 https://github.com/rahulp0491/Malware-Classi ...
- opencv批处理提取图像的特征
____________________________________________________________________________________________________ ...
- jmeter数据库,charles抓包,Python循环语句
jmeter数据库,charles抓包,Python循环语句 一.Jemeter数据库 添加jar包数据库 jemeter=>浏览 添加JDBC Connection Configuration ...
- 【图像基础】图像不变性特征HU矩和Zernike矩
参考 1. 图像不变性特征: 2. matlab实现: 3. HU矩和Zernike矩: 完
- ROS学习手记 - 2.1: Create and Build ROS Package 生成包(Python)
ROS学习手记 - 2.1: Create and Build ROS Package 生成包(Python) 时隔1年,再回来总结这个问题,因为它是ros+python开发中,太常用的一个操作,需要 ...
- go依赖包下载加速方法及github加速
go依赖包下载加速方法及github加速 对于https://github.com/kubernetes/kubernetes整个仓库大小为近900M,下载起来那个伤心: 方法一:使用码云 这是码云上 ...
随机推荐
- 深度探索c++对象模型阅读笔记图
- [Oracle]Oracle的闪回归档
Oracle的闪回归档 场景需求,由于管理数据库的一些核心表,在实施初期会有人为误删除的问题.Oracle 11gR2提供了闪回归档的特性,可以保证不用RMAN来恢复误删除的数据.实践如下: 1.创建 ...
- 设置文本框的 placeholder 的颜色
使用方法: 选择器类型::-webkit-input-placeholder input::-webkit-input-placeholder{ color:rgba(144,147,153,1); ...
- linux下配置vnc-server 和gnome-session
机器比较老,安装时间也十分久远,所以也不知道实验室系统当时是不是完全安装,最近需要使用vnc登录显示界面,结果问题就来了...没有安装vnc-server. (1)机器系统是rhel6.2的,所以就从 ...
- SpringBoot-2.1.1系列二:使用websocket
1.什么是websocket? WebSocket协议是基于TCP的一种新的网络协议.它实现了浏览器与服务器全双工(full-duplex)通信--允许服务器主动发送信息给客户端. 2.为什么需要使用 ...
- java socket通讯
本来是打算验证java socket是不是单线程操作,也就是一次只能处理一个请求,处理完之后才能继续处理下一个请求.但是在其中又发现了许多问题,在编程的时候需要十分注意,今天就拿出来跟大家分享一下. ...
- Jquery实现图片管理
这里实现的是一个图片的在线管理,类似于网络相册的图片管理. 效果图如下: 文件结构如下图: style2.css文件内容如下: @charset "utf-8"; *{;; } i ...
- 干货!直击JVM底层 —— Java Class字节码文件解析
目录 前言 如何阅读class文件 基本概念 无符号数&表 常量池 魔数(magic number) & 版本号 常量池 访问标志 类引索&父类引索&接口引索集合 字段 ...
- P3802 小魔女帕琪 概率与期望
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 《C# 爬虫 破境之道》:第二境 爬虫应用 — 第一节:HTTP协议数据采集
首先欢迎您来到本书的第二境,本境,我们将全力打造一个实际生产环境可用的爬虫应用了.虽然只是刚开始,虽然路漫漫其修远,不过还是有点小鸡冻:P 本境打算针对几大派生类做进一步深耕,包括与应用的结合.对比它 ...