真是一道“简单”的数学题呢~

反演题, 化式子.
\[
ans=\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) \\ =\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^nij[gcd(i,j)=d]\\ =\sum_{d=1}^nd\sum_{i=1}^n\sum_{i=1}^nij[gcd(i,j)=1]\\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}\sum_{j=1}^{\left \lfloor \frac nd \right \rfloor}ij[gcd(i,j)=1] \\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}i\sum_{j=1}^{\left \lfloor \frac nd \right \rfloor}j[gcd(i,j)=1] \\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}i\sum_{j=1}^{\left \lfloor \frac nd \right \rfloor}j\sum_{t|i,j}\mu(t) \\ i=tp,j=tq,\\ =\sum_{d=1}^nd^3\sum_{t=1}^{\left \lfloor \frac nd \right \rfloor}t^2\cdot\mu(t)\sum_{p=1}^{\left \lfloor \frac n{td} \right \rfloor}p\sum_{q=1}^{\left \lfloor \frac n{td} \right \rfloor}q \\ \because \sum_{i=1}^n=\frac {n(n+1)}2\\ \therefore ans=\sum_{d=1}^nd^3\sum_{t=1}^{\left \lfloor \frac nd \right \rfloor}t^2\cdot\mu(t)[\frac{n(n+1)}{2}]
\]
然后我们令\(T=id\), 枚举\(T\),
\[
ans=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2\sum_{d|T}d^3(\frac Td)^2\mu(\frac Td) \\
=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2T^2\sum_{d|T}d\mu(\frac Td) \\
=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2T^2(n*\mu)(T) \\
=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2T^2\varphi(T)
\]
然后我们令\(X=[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2, f(T)=T^2\varphi(T)\), 这样就变成了
\[
ans=\sum_{T=1}^nXf(T)
\]
\(X\)可以分块然后\(O(1)\)算, 那我们只要能求出\(f(T)\)的前缀和就行了.
那\(n<=10^{10}\)要用杜教筛. 我们想一下杜教筛的通式:
\[
s_f(x)=\frac{s_{f*g}(x)-\sum_{i=2}^ns_f(\left \lfloor \frac ni \right \rfloor)g(i)}{g(1)}
\]
其中\(g(x)\)和\((f*g)(x)\)是易求前缀和的函数.
看到这种乘积的前缀和我们又想到了之前做lcm之和的提出乘积中某一项的高端操作, 我们就试着让\(g(x)\)去卷\(n^2\)(就是\(f(x)=x^2\)啦).
然后
\[
g(x)=(n^2\cdot\varphi)(x) \\
(g*n^2)(x)=((n^2\cdot\varphi)*n^2)(x)=(n^2\cdot(\varphi*1))(x)=(n^2\cdot n)(x)=n^3(x)
\]
然后\(n^3(x)\)的前缀和也是有公式的可以\(O(1)\)算, 这样我们就令\(g(x)=n^2(x), (f*g)(x)=n^3(x)\), 然后扔到上面的杜教筛通式里做就好啦~

复杂度可能是\(O(\sqrt n*n^{\frac 23})\)的, 不过这应该是最优的复杂度了..

代码应该不太好写, 懒得写了QAQ

【学术篇】luogu3768 简单的数学题(纯口胡无代码)的更多相关文章

  1. [Luogu3768]简单的数学题

    题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\] \(n\le10^{10}\) sol \[ans=\sum_{d=1}^{n}d\sum_ ...

  2. Luogu3768简单的数学题

    题目描述 题解 我们在一通化简上面的式子之后得到了这么个东西. 前面的可以除法分块做,后面的∑T2∑dµ(T/d)是积性函数,可以线性筛. 然后这个数据范围好像不太支持线性筛,所以考虑杜教筛. 后面那 ...

  3. [luogu3768] 简单的数学题 [杜教筛]

    题面: 传送门 实际上就是求: 思路: 看到gcd就先反演一下,过程大概是这样: 明显的一步反演 这里设,S(x)等于1到x的和 然后把枚举d再枚举T变成先枚举T再枚举其约数d,变形: 后面其中两项展 ...

  4. iOS开发UI篇—Quartz2D简单使用(二)

    iOS开发UI篇—Quartz2D简单使用(二) 一.画文字 代码: // // YYtextview.m // 04-写文字 // // Created by 孔医己 on 14-6-10. // ...

  5. 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

    [Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...

  6. iOS开发数据库篇—SQLite简单介绍

    iOS开发数据库篇—SQLite简单介绍 一.离线缓存 在项目开发中,通常都需要对数据进行离线缓存的处理,如新闻数据的离线缓存等. 说明:离线缓存一般都是把数据保存到项目的沙盒中.有以下几种方式 (1 ...

  7. iOS开发UI篇—Quartz2D简单介绍

    iOS开发UI篇—Quartz2D简单介绍 一.什么是Quartz2D Quartz 2D是⼀个二维绘图引擎,同时支持iOS和Mac系统 Quartz 2D能完成的工作: 绘制图形 : 线条\三角形\ ...

  8. 【转】 iOS开发数据库篇—SQLite简单介绍

    开始学SQLite啦, 原文: http://www.cnblogs.com/wendingding/p/3868893.html iOS开发数据库篇—SQLite简单介绍 一.离线缓存 在项目开发中 ...

  9. iOS开发多线程篇—多线程简单介绍

    iOS开发多线程篇—多线程简单介绍 一.进程和线程 1.什么是进程 进程是指在系统中正在运行的一个应用程序 每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内 比如同时打开QQ.Xcod ...

随机推荐

  1. python skimage库HOG特征提取原码解读

    Hog特征+SVM常用来做行人检测. opencv中也有Hog特征提取的原码,但是由于原码不是用python写的,而skimage用python实现了,所以就解读的skimage的代码. 先看用ski ...

  2. php 单例模式封装MySQL类

    class MysqlConn { //定义一个私有的静态属性,用来存放实例化的对象 private static $dbcon; //定义一个私有的静态属性,用来存在数据库的连接 private s ...

  3. cordova 配置 高德地图sdk定位

    获取 sha1 打开 cmd 1. cd .android 2. keytool -list -v -keystore debug.keystore 3. 输入密钥: android 4. 复制 sh ...

  4. 2018-8-10-win10-uwp-DataContext-

    title author date CreateTime categories win10 uwp DataContext lindexi 2018-08-10 19:16:53 +0800 2018 ...

  5. tcpdump - 转储网络上的数据流

    总览 (SYNOPSIS) tcpdump [ -adeflnNOpqStvx ] [ -c count ] [ -F file ] [ -i interface ] [ -r file ] [ -s ...

  6. java中有几种方法可以实现一个线程?用什么关键字修饰同步方法? stop()和suspend()方法为何不推荐使用?

    有两种实现方法,分别是继承Thread类与实现Runnable接口用synchronized关键字修饰同步方法反对使用stop(),是因为它不安全.它会解除由线程获取的所有锁定,而且如果对象处于一种不 ...

  7. 批量更新数据(BatchUpdate)

    批量更新数据(BatchUpdate) /// <summary> /// 批量更新数据,注意:如果有timestamp列,要移除 /// </summary> /// < ...

  8. siege之-服务端性能测试

    官方网站http://www.joedog.org/ 有3种操作模式: 1) Regression (when invoked by bombardment)Siege从配置文件中读取URLs,按递归 ...

  9. P1537 弹珠

    P1537 弹珠 题目描述 玛莎和比尔各自有自己的弹珠收藏.他们想重新分配收藏品,使两人能平等拥有弹珠.如果所有的弹珠的价值相同,那么他们就可以平分.但不幸的是,有一些弹珠更大,或者更美丽,所以,玛莎 ...

  10. 使用python发送163邮件 qq邮箱

    使用python发送163邮件 def send_email(title, content): import smtplib from email.mime.multipart import MIME ...