【学术篇】luogu3768 简单的数学题(纯口胡无代码)
真是一道“简单”的数学题呢~
反演题, 化式子.
\[
ans=\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) \\ =\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^nij[gcd(i,j)=d]\\ =\sum_{d=1}^nd\sum_{i=1}^n\sum_{i=1}^nij[gcd(i,j)=1]\\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}\sum_{j=1}^{\left \lfloor \frac nd \right \rfloor}ij[gcd(i,j)=1] \\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}i\sum_{j=1}^{\left \lfloor \frac nd \right \rfloor}j[gcd(i,j)=1] \\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}i\sum_{j=1}^{\left \lfloor \frac nd \right \rfloor}j\sum_{t|i,j}\mu(t) \\ i=tp,j=tq,\\ =\sum_{d=1}^nd^3\sum_{t=1}^{\left \lfloor \frac nd \right \rfloor}t^2\cdot\mu(t)\sum_{p=1}^{\left \lfloor \frac n{td} \right \rfloor}p\sum_{q=1}^{\left \lfloor \frac n{td} \right \rfloor}q \\ \because \sum_{i=1}^n=\frac {n(n+1)}2\\ \therefore ans=\sum_{d=1}^nd^3\sum_{t=1}^{\left \lfloor \frac nd \right \rfloor}t^2\cdot\mu(t)[\frac{n(n+1)}{2}]
\]
然后我们令\(T=id\), 枚举\(T\),
\[
ans=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2\sum_{d|T}d^3(\frac Td)^2\mu(\frac Td) \\
=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2T^2\sum_{d|T}d\mu(\frac Td) \\
=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2T^2(n*\mu)(T) \\
=\sum_{T=1}^n[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2T^2\varphi(T)
\]
然后我们令\(X=[\frac{\left \lfloor \frac nT \right \rfloor(\left \lfloor \frac nT \right \rfloor+1)}{2}]^2, f(T)=T^2\varphi(T)\), 这样就变成了
\[
ans=\sum_{T=1}^nXf(T)
\]
\(X\)可以分块然后\(O(1)\)算, 那我们只要能求出\(f(T)\)的前缀和就行了.
那\(n<=10^{10}\)要用杜教筛. 我们想一下杜教筛的通式:
\[
s_f(x)=\frac{s_{f*g}(x)-\sum_{i=2}^ns_f(\left \lfloor \frac ni \right \rfloor)g(i)}{g(1)}
\]
其中\(g(x)\)和\((f*g)(x)\)是易求前缀和的函数.
看到这种乘积的前缀和我们又想到了之前做lcm之和的提出乘积中某一项的高端操作, 我们就试着让\(g(x)\)去卷\(n^2\)(就是\(f(x)=x^2\)啦).
然后
\[
g(x)=(n^2\cdot\varphi)(x) \\
(g*n^2)(x)=((n^2\cdot\varphi)*n^2)(x)=(n^2\cdot(\varphi*1))(x)=(n^2\cdot n)(x)=n^3(x)
\]
然后\(n^3(x)\)的前缀和也是有公式的可以\(O(1)\)算, 这样我们就令\(g(x)=n^2(x), (f*g)(x)=n^3(x)\), 然后扔到上面的杜教筛通式里做就好啦~
复杂度可能是\(O(\sqrt n*n^{\frac 23})\)的, 不过这应该是最优的复杂度了..
代码应该不太好写, 懒得写了QAQ
【学术篇】luogu3768 简单的数学题(纯口胡无代码)的更多相关文章
- [Luogu3768]简单的数学题
题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\] \(n\le10^{10}\) sol \[ans=\sum_{d=1}^{n}d\sum_ ...
- Luogu3768简单的数学题
题目描述 题解 我们在一通化简上面的式子之后得到了这么个东西. 前面的可以除法分块做,后面的∑T2∑dµ(T/d)是积性函数,可以线性筛. 然后这个数据范围好像不太支持线性筛,所以考虑杜教筛. 后面那 ...
- [luogu3768] 简单的数学题 [杜教筛]
题面: 传送门 实际上就是求: 思路: 看到gcd就先反演一下,过程大概是这样: 明显的一步反演 这里设,S(x)等于1到x的和 然后把枚举d再枚举T变成先枚举T再枚举其约数d,变形: 后面其中两项展 ...
- iOS开发UI篇—Quartz2D简单使用(二)
iOS开发UI篇—Quartz2D简单使用(二) 一.画文字 代码: // // YYtextview.m // 04-写文字 // // Created by 孔医己 on 14-6-10. // ...
- 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)
[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...
- iOS开发数据库篇—SQLite简单介绍
iOS开发数据库篇—SQLite简单介绍 一.离线缓存 在项目开发中,通常都需要对数据进行离线缓存的处理,如新闻数据的离线缓存等. 说明:离线缓存一般都是把数据保存到项目的沙盒中.有以下几种方式 (1 ...
- iOS开发UI篇—Quartz2D简单介绍
iOS开发UI篇—Quartz2D简单介绍 一.什么是Quartz2D Quartz 2D是⼀个二维绘图引擎,同时支持iOS和Mac系统 Quartz 2D能完成的工作: 绘制图形 : 线条\三角形\ ...
- 【转】 iOS开发数据库篇—SQLite简单介绍
开始学SQLite啦, 原文: http://www.cnblogs.com/wendingding/p/3868893.html iOS开发数据库篇—SQLite简单介绍 一.离线缓存 在项目开发中 ...
- iOS开发多线程篇—多线程简单介绍
iOS开发多线程篇—多线程简单介绍 一.进程和线程 1.什么是进程 进程是指在系统中正在运行的一个应用程序 每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内 比如同时打开QQ.Xcod ...
随机推荐
- CentOS7 部署单节点 FastDFS
准备 环境 系统:CentOS7.5 软件即依赖 libfatscommon FastDFS分离出的一些公用函数包 FastDFS fastdfs-nginx-module FastDFS和nginx ...
- Cas 4.2.7 OAuth+Rest 实现SSO
关于Cas的认证原理.Rest的使用请参考前面的文章.本文重点阐述使用Rest接口登陆系统和其他单点登录系统打通遇到的问题,及解决问题的思路和过程. 一: 遇到的问题 使用Res ...
- 微信小程序の页面路由
微信小程序的页面路由由平台已栈的形式管理. 微信小程序的页面为什么会如此特殊呢,因为可视区域始终只有一个页面. 一.小程序页面的路由方式 小程序页面有6种路由方式:初始化.打开新页面.页面重定向.页面 ...
- ZOJ-3662 Math Magic 背包DP
这题不错,可惜我还是太弱了,没想到qwq. 看了网上大佬题解之后写的,对比了一下代码,好像我写的还是挺简洁的(逃,只是吞行比较多). 因为直接用lcm的值做下标会超时,所以我们观察发现可以组成lcm为 ...
- eclipse Tomcat8.0端口占用报错和发布路径修改
实际上我是eclipse莫名其妙调试时崩了,结果再启动也无法启动tomcat报端口占用错 修改server.xml里的端口号不是好方法,改完运行报 “ 对不起! 这里不是Web服务器” 后来研究发 ...
- Jmeter实现百分比业务比例
Jmeter实现百分比业务比例 相较于LoadRunner,jmeter在复杂场景方式貌似略有欠缺.前一段时间,想实现一个功能,如有两个采样器a与b,a采样器与b采样器被执行的概率分别为1/4与3 ...
- Python删除文件夹
import os os.rmdir('OS-Demo-2') os.removedirs('OS-Demo-3/sub-Dir-1') os.removedirs()会自动将上一级文件夹也删除,谨慎 ...
- java静态代理及动态代理(学习示例)
1.接口 public interface Channel { void send(); } 2.实现类(可以为各种不同实现) public class ChannelImpl implements ...
- spring boot 四大组件之Auto Configuration
SpringBoot 自动配置主要通过 @EnableAutoConfiguration, @Conditional, @EnableConfigurationProperties 或者 @Confi ...
- 编码格式分类: 前后端传递数据的编码格式contentType
urlencoded:form表单和ajax提交数据的默认编码格式 form-data:传文件 application/json:json格式数据 >>> 前后端分离 urlenco ...