Elasticsearch 5.x 关于term query和match query的认识
http://blog.csdn.net/yangwenbo214/article/details/54142786
一、基本情况 前言:term query和match query牵扯的东西比较多,例如分词器、mapping、倒排索引等。我结合官方文档中的一个实例,谈谈自己对此处的理解 string类型在es5.*分为text和keyword。text是要被分词的,整个字符串根据一定规则分解成一个个小写的term,keyword类似es2.3中not_analyzed的情况。
string数据put到elasticsearch中,默认是text。 NOTE:默认分词器为standard analyzer。”Quick Brown Fox!”会被分解成[quick,brown,fox]写入倒排索引 term query会去倒排索引中寻找确切的term,它并不知道分词器的存在。这种查询适合keyword 、numeric、date
match query知道分词器的存在。并且理解是如何被分词的
总的来说有如下:
- term query 查询的是倒排索引中确切的term
- match query 会对filed进行分词操作,然后在查询 二、测试(1) 准备数据:
POST /termtest/termtype/1
{
"content":"Name"
} POST /termtest/termtype/2
{
"content":"name city"
} 查看数据是否导入
GET /termtest/_search
{
"query":
{
"match_all": {}
}
} 结果:
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1,
"hits": [
{
"_index": "termtest",
"_type": "termtype",
"_id": "",
"_score": 1,
"_source": {
"content": "name city"
}
},
{
"_index": "termtest",
"_type": "termtype",
"_id": "",
"_score": 1,
"_source": {
"content": "Name"
}
}
]
}
} 如上说明,数据已经被导入。该处字符串类型是text,也就是默认被分词了 做如下查询:
POST /termtest/_search
{
"query":{
"term":{
"content":"Name"
}
}
} 结果
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
} 分析结果:因为是默认被standard analyzer分词器分词,大写字母全部转为了小写字母,并存入了倒排索引以供搜索。term是确切查询,
必须要匹配到大写的Name。所以返回结果为空 POST /termtest/_search
{
"query":{
"match":{
"content":"Name"
}
}
} 结果
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.2876821,
"hits": [
{
"_index": "termtest",
"_type": "termtype",
"_id": "",
"_score": 0.2876821,
"_source": {
"content": "Name"
}
},
{
"_index": "termtest",
"_type": "termtype",
"_id": "",
"_score": 0.25811607,
"_source": {
"content": "name city"
}
}
]
}
} 分析结果: 原因(1):默认被standard analyzer分词器分词,大写字母全部转为了小写字母,并存入了倒排索引以供搜索,
原因(2):match query先对filed进行分词,分词为”name”,再去匹配倒排索引中的term 三、测试(2) 下面是官网实例官网实例
1. 导入数据 PUT my_index
{
"mappings": {
"my_type": {
"properties": {
"full_text": {
"type": "text"
},
"exact_value": {
"type": "keyword"
}
}
}
}
} PUT my_index/my_type/1
{
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
} 先指定类型,再导入数据 full_text: 指定类型为text,是会被分词
exact_value: 指定类型为keyword,不会被分词
full_text: 会被standard analyzer分词为如下terms [quick,foxes],存入倒排索引
exact_value: 只有[Quick Foxes!]这一个term会被存入倒排索引 做如下查询
GET my_index/my_type/_search
{
"query": {
"term": {
"exact_value": "Quick Foxes!"
}
}
} 结果: {
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "",
"_score": 0.2876821,
"_source": {
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}
}
]
}
} exact_value包含了确切的Quick Foxes!,因此被查询到 GET my_index/my_type/_search
{
"query": {
"term": {
"full_text": "Quick Foxes!"
}
}
}
结果: {
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
} full_text被分词了,倒排索引中只有quick和foxes。没有Quick Foxes! GET my_index/my_type/_search
{
"query": {
"term": {
"full_text": "foxes"
}
}
} 结果: {
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.25811607,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "",
"_score": 0.25811607,
"_source": {
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}
}
]
}
} full_text被分词,倒排索引中只有quick和foxes,因此查询foxes能成功 GET my_index/my_type/_search
{
"query": {
"match": {
"full_text": "Quick Foxes!"
}
}
} 结果: {
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.51623213,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "",
"_score": 0.51623213,
"_source": {
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}
}
]
}
} match query会先对自己的query string进行分词。也就是”Quick Foxes!”先分词为quick和foxes。然后在去倒排索引中查询,此处full_text是text类型,被分词为quick和foxes
因此能匹配上。
参考文献:http://blog.csdn.net/yangwenbo214/article/details/54142786
Elasticsearch 5.x 关于term query和match query的认识的更多相关文章
- Elasticsearch 5.0 中term 查询和match 查询的认识
Elasticsearch 5.0 关于term query和match query的认识 一.基本情况 前言:term query和match query牵扯的东西比较多,例如分词器.mapping ...
- Elasticsearch Query DSL 整理总结(二)—— 要搞懂 Match Query,看这篇就够了
目录 引言 构建示例 match operator 参数 analyzer lenient 参数 Fuzziness fuzzniess 参数 什么是模糊搜索? Levenshtein Edit Di ...
- Elasticsearch Query DSL 整理总结(四)—— Multi Match Query
目录 引言 概要 fields 字段 通配符 提升字段权重 multi_match查询的类型 best_fields 类型 dis_max 分离最大化查询 best_fields 维权使者 tie_b ...
- Elasticsearch Query DSL 整理总结(三)—— Match Phrase Query 和 Match Phrase Prefix Query
目录 引言 Match Phase Query slop 参数 analyzer 参数 zero terms query Match Phrase 前缀查询 max_expansions 小结 参考文 ...
- Elasticsearch.Net 异常:[match] query doesn't support multiple fields, found [field] and [query]
用Elasticsearch.Net检索数据,报异常: )); ElasticLowLevelClient client = new ElasticLowLevelClient(settings); ...
- elasticsearch 中的Multi Match Query
在Elasticsearch全文检索中,我们用的比较多的就是Multi Match Query,其支持对多个字段进行匹配.Elasticsearch支持5种类型的Multi Match,我们一起来深入 ...
- [Elasticsearch] 全文搜索 (一) 基础概念和match查询
全文搜索(Full Text Search) 现在我们已经讨论了搜索结构化数据的一些简单用例,是时候开始探索全文搜索了 - 如何在全文字段中搜索来找到最相关的文档. 对于全文搜索而言,最重要的两个方面 ...
- Hibernate : Query.list()、Query.iterator()的区别
Query上有list()与iterator()方法,两者的差别在于list()方法在读取数据时,并不会利用到快取,而是直接再向数据库查询,而iterator()则将读取到的数据写到快取,并于读取时再 ...
- query.setFirstResult(0),query.setMaxResults(4)
query.setFirstResult(0),query.setMaxResults(1);相当于MySQL中的limit 0, 1; String hql = "FROM Forum f ...
随机推荐
- HBase Rowkey的散列与预分区设计
转自:http://www.cnblogs.com/bdifn/p/3801737.html 问题导读:1.如何防止热点?2.如何预分区?扩展:为什么会产生热点存储? HBase中,表会被划分为1.. ...
- Selenium常用操作汇总二——如何把一个元素拖放到另一个元素里面(转)
Q群里有时候会有人问,selenium webdriver怎么实现把一个元素拖放到另一个元素里面.这一节总一下元素的拖放. 下面这个页面是一个演示拖放元素的页面,你可以把左右页面中的条目拖放到右边的 ...
- shell编程小结
因为项目中要用到shell脚本,所以系统的看了一下.以前只是泛泛的了解. 变量:环境变量.预定义变量.位置变量.自定义变量. 环境变量这个好说,通过set或者env命令都能看到相应的列表,然后可以通过 ...
- Wings 3D
Wings 3D 编辑 Wings 3D 是一个开源的三维计算机图形软件.使用翼边数据库.注重于多边形建模,构思取与 Izware 的 Nendo 和 Mirai.支持多种操作系统,包括 Linux. ...
- [原创]Allegro 导入DXF文件,保留布好的线路信息
最近智能钥匙产品开发过程中,由于结构装配尺寸的偏差,需要对电路PCB外框OUTLINE进行缩小调整,并且USB插座定位孔改变. Allegro软件在线性绘制方面是有严重缺陷的,想绘制一个异形的板框比较 ...
- css 阻止元素中的文本。双击选中
//firefox -moz-user-select: none; //chrome.safari -webkit-user-select: none; //ie -ms-user-select: n ...
- (个人)Linux基本指令收集
1. 删除文件 其中 -r为向下递归删除 -f为强行删除,不做提示 rm -rf name 1 1 rm -rf name 2. 目录跳转指令 cd .. --跳转到上一级 cd ../ - ...
- Redis 缓存 + Spring 的集成示例(转载)
1. 依赖包安装 pom.xml 加入: <dependency> <groupId>org.springframework.data</groupId> < ...
- Android带进度条的文件上传,使用AsyncTask异步任务
最近项目中要做一个带进度条的上传文件的功能,学习了AsyncTask,使用起来比较方便,将几个方法实现就行,另外做了一个很简单的demo,希望能对大家有帮助,在程序中设好文件路径和服务器IP即可. A ...
- 用Fiddler可以设置浏览器的UA 和 手动 --Chrome模拟手机浏览器(iOS/Android)的三种方法,亲测无误!
附加以一种软件的方法是:用Fiddler可以设置浏览器的UA 以下3种方法是手动的 通过伪装User-Agent,将浏览器模拟成Android设备. 第一种方法:新建Chrome快捷方式 右击桌面上的 ...