A permutation of size n is an array of size n such that each integer from 1 to n occurs exactly once in this array. An inversion in a permutation p is a pair of indices (i,j) such that i>j and ai<aj. For example, a permutation [4,1,3,2] contains 4 inversions: (2,1), (3,1), (4,1), (4,3)

.

You are given a permutation p

of size n. However, the numbers on some positions are replaced by −1. Let the valid permutation be such a replacement of −1 in this sequence back to numbers from 1 to n in such a way that the resulting sequence is a permutation of size n

.

The given sequence was turned into a valid permutation randomly with the equal probability of getting each valid permutation.

Calculate the expected total number of inversions in the resulting valid permutation.

It can be shown that it is in the form of PQ

where P and Q are non-negative integers and Q≠0. Report the value of P⋅Q−1(mod998244353)

.

Input

The first line contains a single integer n

(1≤n≤2⋅105

) — the length of the sequence.

The second line contains n

integers p1,p2,…,pn (−1≤pi≤n, pi≠0

) — the initial sequence.

It is guaranteed that all elements not equal to −1

are pairwise distinct.

Output

Print a single integer — the expected total number of inversions in the resulting valid permutation.

It can be shown that it is in the form of PQ

where P and Q are non-negative integers and Q≠0. Report the value of P⋅Q−1(mod998244353)

.

Examples

Input
3
3 -1 -1
Output
499122179
Input
2
1 2
Output
0
Input
2
-1 -1
Output
499122177

题意:给定一个数组,是一个N的排列,其中有些未知没有填数,让你补全,问逆序对的期望是多少。

思路:就是枚举几种情况就好了。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
const int Mod=;
int vis[maxn],a[maxn],b[maxn],cnt,sum[maxn],fac[maxn],ans,v,tot,N;
int qpow(int a,int x){
int res=; while(x){
if(x&) res=1LL*res*a%Mod;
a=1LL*a*a%Mod; x>>=;
} return res;
}
void add(int x){ for(;x<=N;x+=(-x)&x) sum[x]++;}
int query(int x){ int res=; for(;x;x-=(-x)&x) res+=sum[x]; return res; }
int main()
{
scanf("%d",&N);
rep(i,,N) {
scanf("%d",&a[i]);
if(a[i]!=-) vis[a[i]]=;
}
rep(i,,N) if(!vis[i]) b[++cnt]=i; //空位
sort(b+,b+cnt+);fac[]=; rep(i,,cnt) fac[i]=1LL*fac[i-]*i%Mod;
rep(i,,N){
if(a[i]!=-){
int Less=query(a[i]);
ans=(ans+1LL*(tot-Less)*fac[cnt]%Mod)%Mod; //已知+已知
int pos=lower_bound(b+,b+cnt+,a[i])-b; pos--;
ans=(ans+1LL*pos*(cnt-v)%Mod*fac[cnt-]%Mod)%Mod; //已知+未知
ans=(ans+1LL*(cnt-pos)*v%Mod*fac[cnt-]%Mod)%Mod;//未知+已知
tot++; add(a[i]);
}
else v++;
}
ans=(ans+1LL*cnt*(cnt-)%Mod*fac[cnt]%Mod*qpow(,Mod-)%Mod)%Mod; //未知+未知
fac[cnt]=qpow(fac[cnt],Mod-);
printf("%d\n",1LL*ans*fac[cnt]%Mod);
return ;
}

CF1096.F. Inversion Expectation(树状数组)的更多相关文章

  1. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  2. [hdu1394]Minimum Inversion Number(树状数组)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  3. 2016-2017 ACM-ICPC Southwestern European Regional Programming Contest (SWERC 2016) F dfs序+树状数组

    Performance ReviewEmployee performance reviews are a necessary evil in any company. In a performance ...

  4. 牛客网暑期ACM多校训练营(第五场) F - take —— 期望+树状数组+逆元

    看到一篇好的博客特意转出来观摩大佬:转:https://blog.csdn.net/greybtfly/article/details/81413526 题目大意:给n个箱子排成一排,从头到尾按顺序依 ...

  5. HDU 1394 Minimum Inversion Number (树状数组求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题目让你求一个数组,这个数组可以不断把最前面的元素移到最后,让你求其中某个数组中的逆序对最小是多 ...

  6. HDU 1394 Minimum Inversion Number (树状数组 && 规律 && 逆序数)

    题意 : 有一个n个数的数列且元素都是0~n-1,问你将数列的其中某一个数及其前面的数全部置到后面这种操作中(比如3 2 1 0中选择第二个数倒置就产生1 0 3 2)能产生的最少的逆序数对是多少? ...

  7. 2019牛客多校第七场 F Energy stones 树状数组+算贡献转化模拟

    Energy stones 题意 有n块石头,每块有初始能量E[i],每秒石头会增长能量L[i],石头的能量上限是C[i],现有m次时刻,每次会把[s[i],t[i]]的石头的能量吸干,问最后得到了多 ...

  8. hdu 1394 Minimum Inversion Number - 树状数组

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...

  9. F - Moving Points树状数组

    题:https://codeforces.com/contest/1311/problem/F 题意:给定x轴上的点以及他们的速度v,只在x轴上运动,求最小的dis之和,注意,这里的时间是可随意的,比 ...

随机推荐

  1. [ios]IOS的AppDelegate方法中的事件触发调用 以及 关闭 ios应用程序

    IOS的AppDelegate方法中的事件触发调用 参考:http://blog.sina.com.cn/s/blog_a573f7990101bphp.html //当应用程序将要进入非活动状态执行 ...

  2. Beta冲刺三——《WAP团队》

    β冲刺第三天  1. 今日完成任务情况以及遇到的问题. ①马麒.杜有海:管理员审核表的进一步完善 ②郝明宇:登录.注册界面的完善 ③马宏伟.周欣:继续完善前端数据借用与后台的连接 ④乌勒扎:登录与注册 ...

  3. springboot整合redis缓存

    使用springBoot添加redis缓存需要在POM文件里引入 org.springframework.bootspring-boot-starter-cacheorg.springframewor ...

  4. 获取scrollTop始终为0问题

    $(obj ).scrollTop()获取为 0 解决思路: 1.不设置 obj 高度 div{ height:auto; } 2.强制还原高度 $(obj).css({"height&qu ...

  5. 动态规划3--Help Jimmy

    动态规划3--Help Jimmy 一.心得 二.题目 三.分析 Jimmy跳到一块板上后,可以有两种选择,向左走,或向右走.走到左端和走到右端所需的时间,是很容易算的.如果我们能知道,以左端为起点到 ...

  6. English trip -- Review Unit6 Time 时间

    It's at seven o'clock   整点   7点整 It's at half past seven  or  It's seven-thirty7点30 It's at seven fi ...

  7. 44 CSS 浮动 模态框 定位

    一.浮动 float : 浮动的盒子不占原来的位置,其下方的盒子会上移 父盒子会发生塌陷现象.同一级盒子right浮动,同级左边的盒子需要左浮动,right浮动的盒子才能上来 由于浮动框不在文档的普通 ...

  8. 43 HTML CSS

    第一部分: 1.meta 标签中:meta 标签中 <meta http-equvi = "refresh" content="2;URL= https://www ...

  9. 基础最短路(模板 spfa)

    Description 虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还 ...

  10. vnc xfce tab自动补全失效的解决方法

    edit~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-keyboard-shortcuts.xml find the line <proper ...