CF1096.F. Inversion Expectation(树状数组)
A permutation of size n is an array of size n such that each integer from 1 to n occurs exactly once in this array. An inversion in a permutation p is a pair of indices (i,j) such that i>j and ai<aj. For example, a permutation [4,1,3,2] contains 4 inversions: (2,1), (3,1), (4,1), (4,3)
.
You are given a permutation p
of size n. However, the numbers on some positions are replaced by −1. Let the valid permutation be such a replacement of −1 in this sequence back to numbers from 1 to n in such a way that the resulting sequence is a permutation of size n
.
The given sequence was turned into a valid permutation randomly with the equal probability of getting each valid permutation.
Calculate the expected total number of inversions in the resulting valid permutation.
It can be shown that it is in the form of PQ
where P and Q are non-negative integers and Q≠0. Report the value of P⋅Q−1(mod998244353)
.
Input
The first line contains a single integer n
(1≤n≤2⋅105
) — the length of the sequence.
The second line contains n
integers p1,p2,…,pn (−1≤pi≤n, pi≠0
) — the initial sequence.
It is guaranteed that all elements not equal to −1
are pairwise distinct.
Output
Print a single integer — the expected total number of inversions in the resulting valid permutation.
It can be shown that it is in the form of PQ
where P and Q are non-negative integers and Q≠0. Report the value of P⋅Q−1(mod998244353)
.
Examples
3
3 -1 -1
499122179
2
1 2
0
2
-1 -1
499122177
题意:给定一个数组,是一个N的排列,其中有些未知没有填数,让你补全,问逆序对的期望是多少。
思路:就是枚举几种情况就好了。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
const int Mod=;
int vis[maxn],a[maxn],b[maxn],cnt,sum[maxn],fac[maxn],ans,v,tot,N;
int qpow(int a,int x){
int res=; while(x){
if(x&) res=1LL*res*a%Mod;
a=1LL*a*a%Mod; x>>=;
} return res;
}
void add(int x){ for(;x<=N;x+=(-x)&x) sum[x]++;}
int query(int x){ int res=; for(;x;x-=(-x)&x) res+=sum[x]; return res; }
int main()
{
scanf("%d",&N);
rep(i,,N) {
scanf("%d",&a[i]);
if(a[i]!=-) vis[a[i]]=;
}
rep(i,,N) if(!vis[i]) b[++cnt]=i; //空位
sort(b+,b+cnt+);fac[]=; rep(i,,cnt) fac[i]=1LL*fac[i-]*i%Mod;
rep(i,,N){
if(a[i]!=-){
int Less=query(a[i]);
ans=(ans+1LL*(tot-Less)*fac[cnt]%Mod)%Mod; //已知+已知
int pos=lower_bound(b+,b+cnt+,a[i])-b; pos--;
ans=(ans+1LL*pos*(cnt-v)%Mod*fac[cnt-]%Mod)%Mod; //已知+未知
ans=(ans+1LL*(cnt-pos)*v%Mod*fac[cnt-]%Mod)%Mod;//未知+已知
tot++; add(a[i]);
}
else v++;
}
ans=(ans+1LL*cnt*(cnt-)%Mod*fac[cnt]%Mod*qpow(,Mod-)%Mod)%Mod; //未知+未知
fac[cnt]=qpow(fac[cnt],Mod-);
printf("%d\n",1LL*ans*fac[cnt]%Mod);
return ;
}
CF1096.F. Inversion Expectation(树状数组)的更多相关文章
- HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number ...
- [hdu1394]Minimum Inversion Number(树状数组)
Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 2016-2017 ACM-ICPC Southwestern European Regional Programming Contest (SWERC 2016) F dfs序+树状数组
Performance ReviewEmployee performance reviews are a necessary evil in any company. In a performance ...
- 牛客网暑期ACM多校训练营(第五场) F - take —— 期望+树状数组+逆元
看到一篇好的博客特意转出来观摩大佬:转:https://blog.csdn.net/greybtfly/article/details/81413526 题目大意:给n个箱子排成一排,从头到尾按顺序依 ...
- HDU 1394 Minimum Inversion Number (树状数组求逆序对)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题目让你求一个数组,这个数组可以不断把最前面的元素移到最后,让你求其中某个数组中的逆序对最小是多 ...
- HDU 1394 Minimum Inversion Number (树状数组 && 规律 && 逆序数)
题意 : 有一个n个数的数列且元素都是0~n-1,问你将数列的其中某一个数及其前面的数全部置到后面这种操作中(比如3 2 1 0中选择第二个数倒置就产生1 0 3 2)能产生的最少的逆序数对是多少? ...
- 2019牛客多校第七场 F Energy stones 树状数组+算贡献转化模拟
Energy stones 题意 有n块石头,每块有初始能量E[i],每秒石头会增长能量L[i],石头的能量上限是C[i],现有m次时刻,每次会把[s[i],t[i]]的石头的能量吸干,问最后得到了多 ...
- hdu 1394 Minimum Inversion Number - 树状数组
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...
- F - Moving Points树状数组
题:https://codeforces.com/contest/1311/problem/F 题意:给定x轴上的点以及他们的速度v,只在x轴上运动,求最小的dis之和,注意,这里的时间是可随意的,比 ...
随机推荐
- react notes
jsx 在JSX中嵌入用户输入是安全的,默认情况下, 在渲染之前, React DOM 会格式化(escapes) JSX中的所有值. 从而保证用户无法注入任何应用之外的代码. 在被渲染之前,所有的数 ...
- Kafka特性
———————————————————————————————————————————————— [关键原理] 1.消息文件存储(消息堆积能力) 2.消息topic分区 3.消息顺序的保证 4.拉模型 ...
- EFS 你应该知道的事
需要备份或者还保留这个路径 %USERPROFILE%\AppData\Roaming\Microsoft\Crypto\RSA certmgr.msc 个人证书导出你开始使用EFS加密后的证书 ci ...
- Axel and Marston in Bitland CodeForces - 782F (bitset优化)
题目链接 $dp[0/1][i][x][y]$表示起始边为0/1, 走$2^i$ 步, 是否能从$x$走到$y$ 则有转移方程 $dp[z][i][x][y]\mid=dp[z][i-1][x][k] ...
- httpclient妙用一 httpclient作为客户端调用soap webservice(转)
前面有一篇使用HttpClient调用带参数的post接口方法,这里找到一篇使用HttpClient调用Soap协议接口的方式. 原文地址:httpclient妙用一 httpclient作为客户端调 ...
- ScoketTimeout Exception浅析
以前都是用WebService的方式调用服务方的服务,此次直接调用别人的http服务. 使用的客户端是org.apache.http.client.HttpClient. 用的httpclient-4 ...
- 使用路径arc-奥运五环
<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head> < ...
- 关于PermGen space内存溢出错误解决方法
1.参考: http://blog.csdn.net/fox009/article/details/5633007 http://hi.baidu.com/like_dark/blog/item/19 ...
- Elasticsearch在centos6中的安装
一安装, 在你可以从 elasticsearch.org\/download 下载最新版本的Elasticsearch.tar文件. 一.用户设置 如果已经是普通用户登录可跳过此步骤. Elastic ...
- linux thtree level page tables
To translate a virtual address into a physical one, the CPU must take the contents of each level fie ...