CH3602 Counting Swaps
3602 Counting Swaps 0x30「数学知识」例题
背景
https://ipsc.ksp.sk/2016/real/problems/c.html
Just like yesterday (in problem U of the practice session), Bob is busy, so Alice keeps on playing some single-player games and puzzles. In her newest puzzle she has a permutation of numbers from 1 to n. The goal of the puzzle is to sort the permutation using the smallest possible number of swaps.
Instead of simply solving the puzzle, Alice is wondering about the probability of winning it just by playing at random. In order to answer this question, she needs to know the number of optimal solutions to her puzzle.
描述
You are given a permutation p1, …, pn of the numbers 1 through n. In each step you can choose two numbers x < y and swap px with py.
Let m be the minimum number of such swaps needed to sort the given permutation. Compute the number of different sequences of exactly m swaps that sort the given permutation. Since this number may be large, compute it modulo 109 + 9.
输入格式
The first line of the input file contains an integer t specifying the number of test cases. Each test case is preceded by a blank line.
Each test case consists of two lines. The first line contains the integer n. The second line contains the sequence p1, …, pn: a permutation of 1, …, n.
In the easy subproblem C1, 1 ≤ n ≤ 10.
In the hard subproblem C2, 1 ≤ n ≤ 105.
输出格式
For each test case, output a single line with a single integer: x xmod(109+9)" id="MathJax-Element-1-Frame" role="presentation" style="display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0">mod(10^9+9), where x is the number of ways to sort the given sequence using as few swaps as possible.
样例输入
3
3
2 3 1
4
2 1 4 3
2
1 2
样例输出
3
2
1
样例解释
In the first test case, we can sort the permutation in two swaps. We can make the first swap arbitrarily; for each of them, there’s exactly one optimal second swap. For example, one of the three shortest solutions is “swap p1 with p2 and then swap p1 with p3”.
In the second test case, the optimal solution involves swapping p1 with p2 and swapping p3 with p4. We can do these two swaps in either order.
The third sequence is already sorted. The optimal number of swaps is 0, and thus the only optimal solution is an empty sequence of swaps.
</article>
分析
参照Rose_max的题解。
对于每个位置i,我们向他应该填的数所在的位置p[i]连一条边
如此会出来一些环,我们的目的是将这些环拆成n个自环
对于一个长度为n的环,我们发现要把他拆成n个自环至少需要n-1次操作
设T(x,y)表示将长度为n的环拆成长度分别为x,y的环的方案数,设f[n]表示将长度为n的环拆成n个自环的方案数
画图可知
T(x,y)=n/2" role="presentation" style="position: relative;">T(x,y)=n/2 n为偶数且x=y
T(x,y)=n" role="presentation" style="position: relative;">T(x,y)=n otherwise
对于长度为x的环的操作全部看成0,长度为y的环的操作全部看成1,进行多重集的排列。可以发现这对应出的就是长度为n的环要拆成n个自环的操作方案
根据多重集的排列公式有f[n]=∑x+y=nT(x,y)∗f[x]∗f[y]∗(n−2)!(x−1)!(y−1)!" role="presentation" style="text-align: center; position: relative;">f[n]=∑x+y=nT(x,y)∗f[x]∗f[y]∗(n−2)!(x−1)!(y−1)!最终答案也可以用一个多重集的排列给出
对于k个长度分别为l1,l2,...,lk" role="presentation" style="position: relative;">l1,l2,...,lk的环,有ans=∏f[l1]∗f[l2]∗...∗f[lk]∗(n−k)!(l1−1)!(l2−1)!...(lk−1)!" role="presentation" style="text-align: center; position: relative;">ans=∏f[l1]∗f[l2]∗...∗f[lk]∗(n−k)!(l1−1)!(l2−1)!...(lk−1)!递推复杂度O(n2)" role="presentation" style="position: relative;">O(n2)
我们把f的前几项求出来找规律可以发现f[n]=nn−2" role="presentation" style="position: relative;">f[n]=nn−2
如此复杂度降为O(nlogn)" role="presentation" style="position: relative;">O(nlogn)
代码
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;
rg char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') w=-1;
ch=getchar();
}
while(isdigit(ch))
data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x){
return x=read<T>();
}
typedef long long ll;
co int SIZE=1e5+1,mod=1e9+9;
int p[SIZE],v[SIZE],T,n;
ll jc[SIZE];
int power(int a,int b){
int c=1;
for(;b;b>>=1){
if(b&1) c=(ll)c*a%mod;
a=(ll)a*a%mod;
}
return c;
}
int main()
{
// freopen(".in","r",stdin),freopen(".out","w",stdout);
jc[0]=1;
for(int i=1;i<=1e5;++i) jc[i]=jc[i-1]*i%mod;
read(T);
while(T--){
read(n);
for(int i=1;i<=n;++i) read(p[i]),v[i]=0;
int cnt=0;
ll ans=1;
for(int i=1;i<=n;++i){
if(v[i]) continue;
int len=1;
v[i]=1;
for(int j=p[i];j!=i;j=p[j]) v[j]=1,++len;
++cnt;
ans=ans*(len==1?1:power(len,len-2))%mod;
ans=ans*power(jc[len-1],mod-2)%mod;
}
ans=ans*jc[n-cnt]%mod;
printf("%lld\n",ans);
}
return 0;
}
CH3602 Counting Swaps的更多相关文章
- Counting swaps
Counting swaps 给你一个1-n的排列,问用最少的交换次数使之变为递增排列的方案数\(mod\ 10^9+7\),1 ≤ n ≤ 10^5. 解 显然最少的交换次数不定,还得需要找到最小交 ...
- 洛谷P4778 Counting swaps 数论
正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...
- luogu P4778 Counting swaps
计数套路题?但是我连套路都不会,,, 拿到这道题我一脸蒙彼,,,感谢@poorpool 大佬的博客的指点 先将第\(i\)位上的数字\(p_i\)向\(i\)连无向边,然后构成了一个有若干环组成的无向 ...
- LFYZOJ 104 Counting Swaps
题解 #include <iostream> #include <cstdio> #include <algorithm> #include <cmath&g ...
- lfyzoj104 Counting Swaps
问题描述 给定你一个 \(1 \sim n\) 的排列 \(\{p_i\}\),可进行若干次操作,每次选择两个整数 \(x,y\),交换 \(p_x,p_y\). 请你告诉穰子,用最少的操作次数将给定 ...
- luoguP4778 Counting swaps
题目链接 题解 首先,对于每个\(i\)向\(a[i]\)连边. 这样会连出许多独立的环. 可以证明,交换操作不会跨越环. 每个环内的点到最终状态最少交换步数是 \(环的大小-1\) 那么设\(f[i ...
- P4778 Counting Swaps 题解
第一道 A 掉的严格意义上的组合计数题,特来纪念一发. 第一次真正接触到这种类型的题,给人感觉好像思维得很发散才行-- 对于一个排列 \(p_1,p_2,\dots,p_n\),对于每个 \(i\) ...
- 0x36 组合计数
组合计算的性质: C(n,m)= m! / (n!(m-n)!) C(n,m)=C(m-n,m); C(n,m)=C(n,m-1)+C(n-1,m-1); 二项式定理:(a+b)^n=sigema(k ...
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
随机推荐
- 雷林鹏分享:C# 反射(Reflection)
C# 反射(Reflection) 反射(Reflection) 对象用于在运行时获取类型信息.该类位于 System.Reflection 命名空间中,可访问一个正在运行的程序的元数据. Syste ...
- English trip -- Review Unit6 Time 时间
It's at seven o'clock 整点 7点整 It's at half past seven or It's seven-thirty7点30 It's at seven fi ...
- JDK1.5 新特性
1:自动装箱与拆箱 自动装箱:每当需要一种类型的对象时,这种基本类型就自动地封装到与它相同类型的包装中. 自动拆箱:每当需要一个值时,被装箱对象中的值就被自动地提取出来,没必要再去调用intValue ...
- Android开发中需要注意哪些坑
作为一个有两.三年Android应用开发经验的码农,自然会遇到很多坑,下面是我能够想起的一些坑(实践证明不记笔记可不是个好习惯),后面有想到其它坑会陆续补上. 1.在Android library中不 ...
- Confluence 6 使用 LDAP 授权连接一个内部目录 - 用户 Schema 设置
请注意:这部分仅在拷贝用户登录(Copy User on Login)功能被启用后可见. 其他用户 DN(Additional User DN) 这个值被用在进行用户查找和载入的时候来针对 base ...
- OC MRC之 @property参数(代码分析)
第一部分 // // main.m // 04-@property参数 // // Created by apple on 13-8-9. // Copyright (c) 2013年 itcast. ...
- Phython笔记初识
Phython笔记初识 Python 1898 第一版本 1991 荷兰人 Guido 协议 Gpl 动态语音类型
- (zz)设置单元格的宽度和高度
(zz)设置单元格的宽度和高度 博客分类: POI生成Excel 在Excel中,单元格的宽度其实就是列的宽度,因为Excel假设这一列的单元格的宽度肯定一致.所以要设置单元格的宽度,我们就得从列 ...
- selenium(四)操作cookie,伪造cookie
简介: Cookie,有时也用其复数形式 Cookies,指某些网站为了辨别用户身份.进行 session 跟踪而储存在用户本地终端上的数据. 常见的用途就是保留用户登陆信息,登陆时的7天免登陆,记住 ...
- ArcEngine 9.3与64位操作系统 冲突
ArcEngine 9.3与64位操作系统 冲突 2011年03月30日 星期三 11:13 错误信息: 未处理 System.TypeInitializationException Message ...