http://www.cnblogs.com/ysjxw/archive/2011/10/08/2201782.html

Comments from Xinwei: 最近的一个课题发展到与深度学习有联系,因此在高老师的建议下,我仔细看了下深度学习的基本概念,这篇综述翻译自http://deeplearning.net,与大家分享,有翻译不妥之处,烦请各位指正。

查看最新论文

Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009

深度(Depth)

从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flow graph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算并且一个计算的值(计算的结果被应用到这个节点的孩子节点的值)。考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有孩子,输出节点没有父亲。

对于表达 的流向图,可以通过一个有两个输入节点 和 的图表示,其中一个节点通过使用 作为输入(例如作为孩子)来表示 ;一个节点仅使用 作为输入来表示平方;一个节点使用 和 作为输入来表示加法项(其值为 );最后一个输出节点利用一个单独的来自于加法节点的输入计算SIN。

这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。

传统的前馈神经网络能够被看做拥有等于层数的深度(比如对于输出层为隐层数加1)。SVMs有深度2(一个对应于核输出或者特征空间,另一个对应于所产生输出的线性混合)。

深度架构的动机

学习基于深度架构的学习算法的主要动机是:

不充分的深度是有害的;

大脑有一个深度架构;

认知过程是深度的;

不充分的深度是有害的

在许多情形中深度2就足够(比如logical gates, formal [threshold] neurons, sigmoid-neurons, Radial Basis Function [RBF] units like in SVMs)表示任何一个带有给定目标精度的函数。但是其代价是:图中所需要的节点数(比如计算和参数数量)可能变的非常大。理论结果证实那些事实上所需要的节点数随着输入的大小指数增长的函数族是存在的。这一点已经在logical gates, formal [threshold] neurons 和rbf单元中得到证实。在后者中Hastad说明了但深度是d时,函数族可以被有效地(紧地)使用O(n)个节点(对于n个输入)来表示,但是如果深度被限制为d-1,则需要指数数量的节点数O(2^n)。

我们可以将深度架构看做一种因子分解。大部分随机选择的函数不能被有效地表示,无论是用深地或者浅的架构。但是许多能够有效地被深度架构表示的却不能被用浅的架构高效表示(see the polynomials example in the Bengio survey paper)。一个紧的和深度的表示的存在意味着在潜在的可被表示的函数中存在某种结构。如果不存在任何结构,那将不可能很好地泛化。

大脑有一个深度架构

例如,视觉皮质得到了很好的研究,并显示出一系列的区域,在每一个这种区域中包含一个输入的表示和从一个到另一个的信号流(这里忽略了在一些层次并行路径上的关联,因此更复杂)。这个特征层次的每一层表示在一个不同的抽象层上的输入,并在层次的更上层有着更多的抽象特征,他们根据低层特征定义。

需要注意的是大脑中的表示是在中间紧密分布并且纯局部:他们是稀疏的:1%的神经元是同时活动的。给定大量的神经元,任然有一个非常高效地(指数级高效)表示。

认知过程看起来是深度的
  • 人类层次化地组织思想和概念;
  • 人类首先学习简单的概念,然后用他们去表示更抽象的;
  • 工程师将任务分解成多个抽象层次去处理;

学习/发现这些概念(知识工程由于没有反省而失败?)是很美好的。对语言可表达的概念的反省也建议我们一个稀疏的表示:仅所有可能单词/概念中的一个小的部分是可被应用到一个特别的输入(一个视觉场景)。

学习深度架构的突破

2006年前,尝试训练深度架构都失败了:训练一个深度有监督前馈神经网络趋向于产生坏的结果(同时在训练和测试误差中),然后将其变浅为1(1或者2个隐层)。

2006年的3篇论文改变了这种状况,由Hinton的革命性的在深度信念网(Deep Belief Networks, DBNs)上的工作所引领:

在这三篇论文中以下主要原理被发现:

  • 表示的无监督学习被用于(预)训练每一层;
  • 在一个时间里的一个层次的无监督训练,接着之前训练的层次。在每一层学习到的表示作为下一层的输入;
  • 用无监督训练来调整所有层(加上一个或者更多的用于产生预测的附加层);

DBNs在每一层中利用用于表示的无监督学习RBMs。Bengio et al paper 探讨和对比了RBMs和auto-encoders(通过一个表示的瓶颈内在层预测输入的神经网络)。Ranzato et al paper在一个convolutional架构的上下文中使用稀疏auto-encoders(类似于稀疏编码)。Auto-encoders和convolutional架构将在以后的课程中讲解。

从2006年以来,大量的关于深度学习的论文被发表,一些探讨了其他原理来引导中间表示的训练,查看Learning Deep Architectures for AI

本文英文版出处http://www.iro.umontreal.ca/~pift6266/H10/notes/deepintro.html

深度学习(Deep Learning)算法简介的更多相关文章

  1. (转)深度学习(Deep Learning, DL)的相关资料总结

    from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  4. 机器学习——深度学习(Deep Learning)

    Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key W ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  6. 转:浅谈深度学习(Deep Learning)的基本思想和方法

    浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep ...

  7. (转)机器学习——深度学习(Deep Learning)

    from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立 ...

  8. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  9. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

随机推荐

  1. Vue项目开发之打包后背景图片路径错误的坑

    在开发vue项目的过程中,使用浏览器进行预览的时候所有图片的路径是没有任何问题的,但是在打包后传到服务器上,在微信端查看背景图片时,background的图片竟然不显示,img标签里的图片却是正常展示 ...

  2. STM32F103ZET6 用定时器级联方式输出特定数目的PWM

    STM32F103ZET6 用定时器级联方式输出特定数目的PWM STM32F103ZET6里共有8个定时器,其中高级定时器有TIM1-TIM5.TIM8,共6个. 这里需要使用定时器的级联功能,ST ...

  3. Programming 2D Games 读书笔记(第五章)

      http://www.programming2dgames.com/chapter5.htm 示例一:Planet 真正示例的开始,首先是载入2张图片 1.Graphics添加了2个方法 load ...

  4. XML 高速入门总结

    XML已经学习完了一段时间了.一直感觉知识比較琐碎,没有去好好总结.事实上越琐碎的知识也越须要我们去好好 理一下.将知识串起来.争取变得不再琐碎.以下是我学完xml画的一张图. 以下对XML进行一下简 ...

  5. mixpanel实验教程(1)

    一.关于 mixpanel 这个我不想多说,不明确请看官方手冊:https://mixpanel.com/help/reference/ 二.注冊 mixpanel.com 是一个商业机构.它的用户分 ...

  6. JAVA各种系统架构图及其简介

    1.spring架构图 Spring是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为J2EE应用程序开发提供集成的框 ...

  7. 更好使用jQuery的8个小技巧

    更好地使用jQuery,这里总结了8个小技巧. 1.DOM遍历是昂贵的,将变量缓存起来. //不推荐var h = $('#ele').height();$('#ele').css('height', ...

  8. 在ASP.NET MVC4中实现同页面增删改查,无弹出框02,增删改查界面设计

    在上一篇"在ASP.NET MVC4中实现同页面增删改查,无弹出框01,Repository的搭建"中,已经搭建好了Repository层,本篇就剩下增删改查的界面了......今 ...

  9. ArcGIS Pro 中的布局

    ArcGIS Pro 中的布局 页面布局(通常简称为布局)是在虚拟页面上组织的地图元素的集合,旨在用于地图打印.常见的地图元素包括一个或多个地图框(每个地图框都含有一组有序的地图图层).比例尺.指北针 ...

  10. <fmt:formatNumber>标签

    <fmt:formatNumber>标签用于格式化数字,百分比,货币. 属性 <fmt:formatNumber>标签有如下属性: 属性 描述 是否必要 默认值 value 要 ...