import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def add_layer(inputs,in_size,out_size,activation_function=None):
W=tf.Variable(tf.random_normal([in_size,out_size]))
b=tf.Variable(tf.zeros([1,out_size])+0.01)
Z=tf.matmul(inputs,W)+b
if activation_function is None:
out_puts=Z
else:
out_puts=activation_function(Z)
return out_puts
if __name__=="__main__":
MINST=input_data.read_data_sets("./",one_hot=True)
learning_rate=0.05
batch_size=128
n_epochs=10
X=tf.placeholder(tf.float32,[batch_size,784])
Y=tf.placeholder(tf.float32,[batch_size,10])
L1=add_layer(X,784,1000,tf.nn.relu)
prediction=add_layer(L1,1000,10)
entropy=tf.nn.softmax_cross_entropy_with_logits(labels=Y,logits=prediction)
loss=tf.reduce_mean(entropy)
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
n_batches=int(MINST.train.num_examples/batch_size)
for i in range(n_epochs):
for j in range(n_batches):
X_batch,Y_batch=MINST.train.next_batch(batch_size=batch_size)
_,loss_=sess.run([optimizer,loss],feed_dict={
X:X_batch,
Y:Y_batch
})
if j == 0:
print("Loss of epochs[{0}] batch[{1}]: {2}".format(i, j, loss_)) # test the model
n_batches = int(MINST.test.num_examples / batch_size)
total_correct_preds = 0
for i in range(n_batches):
X_batch, Y_batch = MINST.test.next_batch(batch_size)
preds = sess.run(prediction, feed_dict={X: X_batch, Y: Y_batch})
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y_batch, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) total_correct_preds += sess.run(accuracy) print("Accuracy {0}".format(total_correct_preds / MINST.test.num_examples))

我们不做卷积。直接将x输入到网络中去。最后用softmax作为激活函数

大概结构,我这里没法上传,等我回去在传。

使用一层神经网络训练mnist数据集的更多相关文章

  1. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  2. mxnet卷积神经网络训练MNIST数据集测试

    mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...

  3. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  4. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  5. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

  6. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  7. deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  8. TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  9. TensorFlow 训练MNIST数据集(2)—— 多层神经网络

    在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...

随机推荐

  1. strace命令解析

    strace常用于跟踪和分析进程执行时中系统调用和耗时以及占用cpu的比例,常用的格式如下: 1.sudo /usr/bin/strace -Ttt -p pid 2>pid.log 跟进pid ...

  2. C语言学习笔记 (010) - 编写strcpy函数

    很多公司的面试官在面试程序员的时候,要求应聘者写出库函数strcpy()的工作方式或者叫实现,很多人以为这个题目很简单,实则不然,别看这么一个小小的函数,它可以从三个方面来考查: (1)编程风格 (2 ...

  3. C语言学习笔记 (009) - 对函数的进一步讨论

    一.给main函数传参: # include <stdio.h> int main(int argc,char **argv){ printf(]); ; } 二.指向函数指针变量的定义 ...

  4. Rplidar学习(二)—— SDK库文件学习

    SDK头文件介绍 1.头文件简介: rplidar.h //一般情况下开发的项目中仅需要引入该头文件即可使用 RPLIDAR SDK 的所有功能. rplidar_driver.h //定义了 SDK ...

  5. TripleDES之C#和PHP之间加密解密

    在C#常用加密解密一文中,介绍了几个加密解密方法,其中有个如何使用对称加密算法DES,此次说下DES的升级版,TripleDES. DES和TripleDES之间的关系可以参考下面的博文. 对称加密D ...

  6. 基于matplotlib的数据可视化 - 柱状图bar

    柱状图bar 柱状图常用表现形式为: plt.bar(水平坐标数组,高度数组,宽度比例,ec=勾边色,c=填充色,label=图例标签) 注:当高度值为负数时,柱形向下 1 语法 bar(*args, ...

  7. LINUX-vmstat命令讲解

    vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况. 一般vmstat工具的使用是通过两个 ...

  8. ggplot2-设置坐标轴

    本文更新地址:http://blog.csdn.net/tanzuozhev/article/details/51107583 本文在 http://www.cookbook-r.com/Graphs ...

  9. mysql 5.5数据库主从配置步骤详解

    上次给大家介绍了mysql 5.1主从搭建配置教程,这次我们来实现mysql 5.5的主从复制,其实大体上配置是差不多的,只有点细微的差别. 系统:centos 5.x 需要的软件包:mysql-5. ...

  10. php中array_merge合并数组详解

    如果键名有重复,该键的键值为最后一个键名对应的值(后面的覆盖前面的).如果数组是数字索引的,则键名会以连续方式重新索引. 注释:如果仅仅向 array_merge() 函数输入了一个数组,且键名是整数 ...