MapReduce实现大矩阵乘法
来自:http://blog.csdn.net/xyilu/article/details/9066973
引言
矩阵乘法为何重要?这个时代(我就不说那个被媒体用烂了的恶心词汇了),在海量数据中淘金,已是各大互联网公司的既定目标,亚马逊是数据化运营的成功典
范,Google、百度投巨资用于对海量数据进行深度学习(Deep
Learning)研究,阿里把数据与平台、金融并列成为未来三大战略。话扯得有点大而远,但任何伟大的战略,最终都要落地到非常细粒度的具体操作上。我
们想在海量数据中淘到金子,强大的挖掘工具是必不可少的,而诸如回归、聚类、主成分分析、决策树等数据挖掘算法常常涉及大规模矩阵运算。这其中,大矩阵乘
法具有较大的时间消耗,是算法的瓶颈。张俊林的文章[2]用到了谱聚类算法,其中有个重要步骤是将相似度矩阵转换为拉普拉斯矩阵,这就需要用到大矩阵乘
法。很酷有没有!大矩阵乘法运算可以从根基上影响数据战略的实施,它比那些大而空的废话重要千百万倍。
- 大矩阵如何存储?
- 计算模型如何设计?
- 矩阵维度如何传递给乘法运算?
3个问题看似与矩阵的“大”无关,但实际上,当矩阵规模巨大时,我们就不太可能像对待小规模矩阵一样将整个矩阵读入内存、从而在一个job中就判断出其维
度,而是需要分开成为两个job,第一个job专注于计算矩阵维度并存入全局变量,传递给第二个job做乘法运算。MapReduce中全局变量的传递,
可以专门写一篇长文来讨论,本文中我们假定矩阵维度已知,并在代码中写死,从而先着眼于解决前两个问题。
数据准备

是一个存储方式
们注意到,根据海量数据构造的矩阵,往往是极其稀疏的。比如4000万*4000万的相似度矩阵,一般来说,如果平均每个用户和1万个用户具有大于零的相
似度,常识告诉我们,这样的关系网络已经非常密集了(实际网络不会这样密集,看看自己的微博,被你关注的、评论过的、转发过的对象,会达到1万个吗?);
但对于4000万维度的矩阵,它却依然是极度稀疏的。
1 2 2
1 3 3
2 1 4
2 2 5
3 1 7
3 2 8
3 3 9
4 1 10
4 2 11
4 3 12
1 2 15
2 2 2
3 1 11
3 2 9

计算模型
value>对,并且这
value>对的key应该都是相同的,这样才能被传递到同一个Reduce中。
value>的形式。其中
value>形式,其中
- 当前的<key, list(value)>对是为了计算
的哪个元素?
- list中的每个value是来自表
或表
的哪个位置?
import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.StringTokenizer; import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordWriter;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapred.lib.MultipleOutputFormat;
import org.apache.hadoop.util.Progressable; public class Bigmmult {
public static final String CONTROL_I = "\u0009";
public static final int MATRIX_I = 4;
public static final int MATRIX_J = 3;
public static final int MATRIX_K = 2; public static String makeKey(String[] tokens, String separator) {
StringBuffer sb = new StringBuffer();
boolean isFirst = true;
for (String token : tokens) {
if (isFirst)
isFirst = false;
else
sb.append(separator);
sb.append(token);
}
return sb.toString();
} public static class MapClass extends MapReduceBase implements
Mapper<LongWritable, Text, Text, Text> {
public static HashMap<String , Double> features = new HashMap<String, Double>(); public void configure(JobConf job) {
super.configure(job);
} public void map(LongWritable key, Text value, OutputCollector<Text, Text> output,
Reporter reporter) throws IOException, ClassCastException {
// 获取输入文件的全路径和名称
String pathName = ((FileSplit)reporter.getInputSplit()).getPath().toString(); if (pathName.contains("m_ys_lab_bigmmult_a")) {
String line = value.toString(); if (line == null || line.equals("")) return;
String[] values = line.split(CONTROL_I); if (values.length < 3) return; String rowindex = values[0];
String colindex = values[1];
String elevalue = values[2]; for (int i = 1; i <= MATRIX_K; i ++) {
output.collect(new Text(rowindex + CONTROL_I + i), new Text("a#"+colindex+"#"+elevalue));
}
} if (pathName.contains("m_ys_lab_bigmmult_b")) {
String line = value.toString();
if (line == null || line.equals("")) return;
String[] values = line.split(CONTROL_I); if (values.length < 3) return; String rowindex = values[0];
String colindex = values[1];
String elevalue = values[2]; for (int i = 1; i <= MATRIX_I; i ++) {
output.collect(new Text(i + CONTROL_I + colindex), new Text("b#"+rowindex+"#"+elevalue));
}
}
}
} public static class Reduce extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException { int[] valA = new int[MATRIX_J];
int[] valB = new int[MATRIX_J]; int i;
for (i = 0; i < MATRIX_J; i ++) {
valA[i] = 0;
valB[i] = 0;
} while (values.hasNext()) {
String value = values.next().toString();
if (value.startsWith("a#")) {
StringTokenizer token = new StringTokenizer(value, "#");
String[] temp = new String[3];
int k = 0;
while(token.hasMoreTokens()) {
temp[k] = token.nextToken();
k++;
} valA[Integer.parseInt(temp[1])-1] = Integer.parseInt(temp[2]);
} else if (value.startsWith("b#")) {
StringTokenizer token = new StringTokenizer(value, "#");
String[] temp = new String[3];
int k = 0;
while(token.hasMoreTokens()) {
temp[k] = token.nextToken();
k++;
} valB[Integer.parseInt(temp[1])-1] = Integer.parseInt(temp[2]);
}
} int result = 0;
for (i = 0; i < MATRIX_J; i ++) {
result += valA[i] * valB[i];
} output.collect(key, new Text(Integer.toString(result)));
}
}
}
参考资料
MapReduce实现大矩阵乘法的更多相关文章
- Hadoop下大矩阵乘法Version2
1)使用本方法计算F*B,其中F是1000*1000的矩阵,B是1000*20000的矩阵,使用三个节点的集群,每个节点一个CPU核(集群装在虚拟机里,宿主机只有4个CPU核),每个节点配置一个map ...
- MapReduce实现矩阵乘法
简单回想一下矩阵乘法: 矩阵乘法要求左矩阵的列数与右矩阵的行数相等.m×n的矩阵A,与n×p的矩阵B相乘,结果为m×p的矩阵C.具体内容能够查看:矩阵乘法. 为了方便描写叙述,先进行如果: 矩阵A的行 ...
- 矩阵乘法的MapReduce实现
对于任意矩阵M和N,若矩阵M的列数等于矩阵N的行数,则记M和N的乘积为P=M*N,其中mik 记做矩阵M的第i行和第k列,nkj记做矩阵N的第k行和第j列,则矩阵P中,第i行第j列的元素可表示为公式( ...
- 【甘道夫】MapReduce实现矩阵乘法--实现代码
之前写了一篇分析MapReduce实现矩阵乘法算法的文章: [甘道夫]Mapreduce实现矩阵乘法的算法思路 为了让大家更直观的了解程序运行,今天编写了实现代码供大家參考. 编程环境: java v ...
- THUSCH 2017 大魔法师(矩阵乘法+线段树)
题意 https://loj.ac/problem/2980 思路 区间修改考虑用线段树维护.由于一段区间的 \(A,B,C\) 可以表示成由原来的 \(A,B,C\) 乘上带上系数再加上某一个某个常 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
随机推荐
- Monitoring an IBM JVM with VisualVM
Monitoring an IBM JVM with VisualVM 分类: Java 2013-06-09 16:15 250人阅读 评论(0) 收藏 举报 JDK6 update 7 and o ...
- Hive学习之自己定义聚合函数
Hive支持用户自己定义聚合函数(UDAF),这样的类型的函数提供了更加强大的数据处理功能. Hive支持两种类型的UDAF:简单型和通用型.正如名称所暗示的,简单型UDAF的实现很easy,但因为使 ...
- HTML5 a标签的download属性
介绍一个HTML5的新特性 a标签的download属性: 目前市场上面支持的浏览器有限: html: <!DOCTYPE html> <html> <body> ...
- [Hook] 免root,自己进程内,binder hook (ClipboardManager)
cp from : http://weishu.me/2016/02/16/understand-plugin-framework-binder-hook/ Android系统通过Binder机制给应 ...
- Orchard之生成新模板
一:启用 Code Generation 进入后台, Modules –> Developer Enable 之. 二:生成模版 首先,进入 Orchard 命令行 在 CMD 下到达解决 ...
- Gradle 简介
一.简介 Gradle 是 Android 现在主流的编译工具,虽然在Gradle 出现之前和之后都有对应更快的编译工具出现,但是 Gradle 的优势就在于它是亲儿子,Gradle 确实比较慢,这和 ...
- Java命令学习系列(六)——jinfo
jinfo可以输出java进程.core文件或远程debug服务器的配置信息.这些配置信息包括JAVA系统参数及命令行参数,如果进程运行在64位虚拟机上,需要指明-J-d64参数,如:jinfo -J ...
- 理解 Linux 的处理器负载均值
原文链接: http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages 你可能对于 Linux 的负载均值(loa ...
- 在ASP.NET MVC中以post方式传递数组参数的示例【转】
最近在工作中用到了在ASP.NET MVC中以post方式传递数组参数的情况,记录下来,以供参考. 一.准备参数对象 在本例中,我会传递两个数组参数:一个字符串数组,一个自定义对象数组.这个自定义对象 ...
- Text Justification leetcode java
题目: Given an array of words and a length L, format the text such that each line has exactly L charac ...