OpenCASCADE Trihedron Law
OpenCASCADE Trihedron Law
Abstract. In differential geometry the Frenet-Serret formulas describe the kinematic properties of a particle moving along a continuous, differentiable curve in 3d space, or the geometric properties of the curve itself irrespective of any motion. More specifically, the formulas describe the derivatives of the so-called Tangent, Normal and Binormal unit vectors in terms of each other.
Key Words. Frenet-Serret Frame, TNB frame, Trihedron Law
1. Introduction
参数曲线上的局部坐标系,也称为标架Frame,OpenCASCADE中叫Trihedron。这个局部坐标系随着曲线上点的运动而运动,所以也称为活动坐标系。活动坐标系中各坐标轴的选取:
l T是参数曲线的切线方向;
l N是曲线的主法线方向,或称主法矢;主法矢总是指向曲线凹入的方向;
l B是副法矢;当T 和N确定后,通过叉乘即得到B。
Figure 1. T, N, B frame of a curve (from wiki)
定义一个活动标架有什么作用呢?把这个问题先保留一下。本文先介绍OpenCASCADE中的标架规则Trihedron Law。
2.Trihedron Law
在OpenCASCADE中,类GeomFill_TrihedronLaw定义了曲线活动标架。其类图如下所示:
Figure 2. Trihedron Law define Trihedron along a Curve
从基类GeomFill_TrihedronLaw派生出了各种标架,如:
l GeomFill_Fixed:固定的活动动标架,即标架沿着曲线移动时,标架的三个方向是固定的;
l GeomFill_Frenet: Frenet标架;
l GeomFill_Darboux :Darboux标架;
l GeomFill_ConstantBiNormal:副法矢固定的标架;
3. Code Demo
下面通过示例代码来显示出曲线上的Frenet标架,GeomFill_TrihedronLaw子类的用法类似。
/*
Copyright(C) 2018 Shing Liu(eryar@163.com) Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions : The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/ #include <TColgp_Array1OfPnt.hxx> #include <math_BullardGenerator.hxx> #include <GCPnts_UniformAbscissa.hxx>
#include <GCPnts_UniformDeflection.hxx>
#include <GCPnts_TangentialDeflection.hxx>
#include <GCPnts_QuasiUniformDeflection.hxx> #include <Geom_BSplineCurve.hxx> #include <GeomAdaptor_HCurve.hxx> #include <GeomAPI_PointsToBSpline.hxx> #include <GeomFill_Fixed.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_ConstantBiNormal.hxx>
#include <GeomFill_CorrectedFrenet.hxx>
#include <GeomFill_Darboux.hxx>
#include <GeomFill_DiscreteTrihedron.hxx>
#include <GeomFill_GuideTrihedronAC.hxx>
#include <GeomFill_GuideTrihedronPlan.hxx> #include <BRepBuilderAPI_MakeEdge.hxx> #include <BRepTools.hxx> #pragma comment(lib, "TKernel.lib")
#pragma comment(lib, "TKMath.lib") #pragma comment(lib, "TKG2d.lib")
#pragma comment(lib, "TKG3d.lib")
#pragma comment(lib, "TKGeomBase.lib")
#pragma comment(lib, "TKGeomAlgo.lib") #pragma comment(lib, "TKBRep.lib")
#pragma comment(lib, "TKTopAlgo.lib") void test()
{
TColgp_Array1OfPnt aPoints(, );
math_BullardGenerator aBullardGenerator;
for (Standard_Integer i = aPoints.Lower(); i <= aPoints.Upper(); ++i)
{
Standard_Real aX = aBullardGenerator.NextReal() * 50.0;
Standard_Real aY = aBullardGenerator.NextReal() * 50.0;
Standard_Real aZ = aBullardGenerator.NextReal() * 50.0; aPoints.SetValue(i, gp_Pnt(aX, aY, aZ));
} GeomAPI_PointsToBSpline aBSplineFitter(aPoints);
if (!aBSplineFitter.IsDone())
{
return;
} std::ofstream aTclFile("d:/tcl/trihedron.tcl"); aTclFile << std::fixed;
aTclFile << "vclear" << std::endl; Handle(Geom_BSplineCurve) aBSplineCurve = aBSplineFitter.Curve();
Handle(GeomAdaptor_HCurve) aCurveAdaptor = new GeomAdaptor_HCurve(aBSplineCurve); BRepBuilderAPI_MakeEdge anEdgeMaker(aBSplineCurve);
BRepTools::Write(anEdgeMaker, "d:/edge.brep"); aTclFile << "restore " << " d:/edge.brep e" << std::endl;
aTclFile << "incmesh e " << " 0.01" << std::endl;
aTclFile << "vdisplay e " << std::endl; Handle(GeomFill_Frenet) aFrenet = new GeomFill_Frenet();
aFrenet->SetCurve(aCurveAdaptor); GCPnts_UniformAbscissa aPointSampler(aCurveAdaptor->Curve(), 5.0);
for (Standard_Integer i = ; i <= aPointSampler.NbPoints(); ++i)
{
Standard_Real aParam = aPointSampler.Parameter(i);
gp_Pnt aP = aCurveAdaptor->Value(aParam); gp_Vec aT;
gp_Vec aN;
gp_Vec aB; aFrenet->D0(aParam, aT, aN, aB); // vtrihedron in opencascade draw 6.9.1
/*aTclFile << "vtrihedron vt" << i << " " << aP.X() << " " << aP.Y() << " " << aP.Z() << " "
<< " " << aB.X() << " " << aB.Y() << " " << aB.Z() << " "
<< " " << aT.X() << " " << aT.Y() << " " << aT.Z() << std::endl;*/ // vtrihedron in opencascade draw 7.1.0 has bug.
/*aTclFile << "vtrihedron vt" << i << " -origin " << aP.X() << " " << aP.Y() << " " << aP.Z() << " "
<< " -zaxis " << aB.X() << " " << aB.Y() << " " << aB.Z() << " "
<< " -xaxis " << aT.X() << " " << aT.Y() << " " << aT.Z() << std::endl;*/ // vtrihedron in opencascade draw 7.2.0
aTclFile << "vtrihedron vt" << i << " -origin " << aP.X() << " " << aP.Y() << " " << aP.Z() << " "
<< " -zaxis " << aB.X() << " " << aB.Y() << " " << aB.Z() << " "
<< " -xaxis " << aT.X() << " " << aT.Y() << " " << aT.Z() << std::endl;
aTclFile << "vtrihedron vt" << i << " -labels xaxis T 1" << std::endl;
aTclFile << "vtrihedron vt" << i << " -labels yaxis N 1" << std::endl;
aTclFile << "vtrihedron vt" << i << " -labels zaxis B 1" << std::endl; aTclFile << "vsize vt" << i << "" << std::endl;
}
} int main(int argc, char* argv[])
{
test(); return ;
}
程序通过拟合几个随机产生的点生成B样条曲线,再将曲线按弧长等距采样,将得到的参数计算出曲线上的点,及Frenet标架。再生成Draw脚本文件,最后将生成的Draw脚本文件trihedron.tcl加载到Draw Test Harness中显示结果如下图所示:
Figure 3. Frenet Frame
由上图可知,局部坐标系的T方向为曲线的切线方向。主法向N总是指向曲线凹侧。
4. Conclusion
曲线的活动标架是《微分几何》中一个很基础的概念。有了曲线的活动标架,扫掠造型Sweep算法的实现有了一些思路。当给定一个轮廓线后,将轮廓线沿着路径曲线扫掠可以理解为将轮廓线变换到曲线的活动标架中。
本文主要演示了Frenet活动标架的例子,读者可以将GeomFill_TrihedronLaw其他的子类表示的其他类型活动标架自己实现,加深理解。
5. References
1. 赵罡, 穆国旺, 王拉柱. 非均匀有理B样条. 清华大学出版社. 2010
2. 陈维桓. 微分几何. 北京大学出版社. 2006
3. 朱心雄. 自由曲线曲面造型技术. 科学出版社. 2000
OpenCASCADE Trihedron Law的更多相关文章
- OpenCascade Law Function
OpenCascade Law Function eryar@163.com 1.Introduction 在OpenCASCADE的TKGeomAlgo Toolkit中提供了一个Law Packa ...
- OpenCascade Sweep Algorithm
OpenCascade Sweep Algorithm eryar@163.com Abstract. Sweeps are the objects you obtain by sweeping a ...
- OpenCASCADE AIS Manipulator
OpenCASCADE AIS Manipulator eryar@163.com Abstract. OpenCASCADE7.1.0 introduces new built-in interac ...
- Convert BSpline Curve to Arc Spline in OpenCASCADE
Convert BSpline Curve to Arc Spline in OpenCASCADE eryar@163.com Abstract. The paper based on OpenCA ...
- OpenCASCADE Shape Location
OpenCASCADE Shape Location eryar@163.com Abstract. The TopLoc package of OpenCASCADE gives resources ...
- OpenCASCADE BRep Projection
OpenCASCADE BRep Projection eryar@163.com 一网友发邮件问我下图所示的效果如何在OpenCASCADE中实现,我的想法是先构造出螺旋线,再将螺旋线投影到面上. ...
- OpenCASCADE Expression Interpreter by Flex & Bison
OpenCASCADE Expression Interpreter by Flex & Bison eryar@163.com Abstract. OpenCASCADE provide d ...
- OpenCASCADE Data Exchange - 3D PDF
OpenCASCADE Data Exchange - 3D PDF eryar@163.com Abstract. Today most 3D engineering model data are ...
- OpenCASCADE Interpolations and Approximations
OpenCASCADE Interpolations and Approximations eryar@163.com Abstract. In modeling, it is often requi ...
随机推荐
- Heavy Transportation POJ - 1797
题意 给你n个点,1为起点,n为终点,要求所有1到n所有路径中每条路径上最小值的最最值. 思路 不想打最短路 跑一边最大生成树,再扫一遍1到n的路径,取最小值即可,类似Frogger POJ - 22 ...
- iOS开发--XMPPFramework--环境的配置(一)
一.XMPPFramework概述 XMPPFramework是一个OS X/iOS平台的开源项目,使用Objective-C实现了XMPP协议(RFC-3920),同时还提供了用于读写XML的工具, ...
- 网络防火墙和NAT地址转换
网络防火墙 iptables/netfilter网络防火墙: (1) 充当网关 (2) 使用filter表的FORWARD链 注意的问题: (1) 请求-响应报文均会经由FORWARD链,要注意规则的 ...
- 【noip模拟】2048
Time limit: 1000ms Memory limits: 256MB Description 2048曾经是一款风靡全球的小游戏.今天,我们换一种方式来玩这个小游戏.现在, ...
- hive数据库的哪些函数操作是否走MR
平时我们用的HIVE 我们都知道 select * from table_name 不走MR 直接走HTTP hive 0.10.0为了执行效率考虑,简单的查询,就是只是select,不带count, ...
- c++中使用xercesc对xml进行schema校验
头文件 #pragma once #if !defined(AFX_A1CONTENTHANDLER_H__E0CFBC18_CCC1_42F3_B0A4_B03331AB9693__INCLUDED ...
- 关于“应用程序无法启动,因为应用程序的并行配置不正确。请参阅应用程序事件日志,或使用命令行sxstrace.exe工具”问题的解决方法
今天打开QQ管家加速版的时候突然出现了这个错误,百度了下说是系统缺少Microsoft Visual C++ 20XX(运行库),下载这个安装即可解决问题.
- 关于JDK和eclipse的安装和汉化
参考网址:http://jingyan.baidu.com/article/f96699bb8b38e0894e3c1bef.html http://titanseason.iteye.com/blo ...
- c# 根据唯一码,存缓存 实现12小时内 阅读量+1
需求:某一个详细页面需要实现用户 12小时内阅读量+1, 实现思路;得到一个唯一码的机器码,不管是否用户登录了 都有这个码,然后存到缓存里面 最后判断时间+12小时 是否超过当前时间 string ...
- Git分支(2/5) -- Fast Forward 合并
快捷操作: 切换并创建分支: git checkout -b 分支名. git checkout -b some-change 然后我打开某个文件(index.html)修改一下标题. Commit之 ...