题目戳我

一道模板题

自己尝试证明了大部分。。。

剩下的还是没太证出来。。。

所以就是一个模板放在这里

以后再来补东西吧。。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
using namespace std;
#define MAX 2700000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
const double Pi=acos(-1);
int N,M,r[MAX],l;
complex<double> a[MAX],b[MAX];
void FFT(complex<double> *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
complex<double> W(cos(Pi/i),opt*sin(Pi/i));
for(int p=i<<1,j=0;j<N;j+=p)
{
complex<double> w(1,0);
for(int k=0;k<i;k++,w*=W)
{
complex<double> X=P[j+k],Y=w*P[j+k+i];
P[j+k]=X+Y;P[j+k+i]=X-Y;
}
}
}
} int main()
{
N=read();M=read();
for(int i=0;i<=N;++i)a[i]=read();
for(int i=0;i<=M;++i)b[i]=read();
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);
FFT(b,1);
for(int i=0;i<=N;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<=M;++i)printf("%d ",(int)(a[i].real()/N+0.5));
return 0;
}

【Luogu3808】多项式乘法FFT(FFT)的更多相关文章

  1. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  2. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  3. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  4. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  5. 多项式乘法,FFT与NTT

    多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...

  6. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  7. UVALive - 6886 Golf Bot 多项式乘法(FFT)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...

  8. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

  9. 【UOJ 34】 多项式乘法 (FFT)

    [题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...

  10. [洛谷P3803] 【模板】多项式乘法(FFT, NTT)

    题目大意:$FFT$,给你两个多项式,请输出乘起来后的多项式. 题解:$FFT$,由于给的$n$不是很大,也可以用$NTT$做 卡点:无 C++ Code:  FFT: #include <cs ...

随机推荐

  1. 搭建简易的c语言与python语言CGI和Apache服务器的开发环境

    搭建简易的c语言CGI和Apache服务器的开发环境 http://www.cnblogs.com/tt-0411/archive/2011/11/21/2257203.html python配置ap ...

  2. Redis缓存 序列化对象存储乱码问题

    使用Redis缓存对象会出现下图现象: 键值对都是乱码形式. 解决以上问题: 如果是xml配置的 我们直接注入官方给定的keySerializer,valueSerializer,hashKeySer ...

  3. HTML/CSS 常用单词整理

    页面布局(layout) header 头部/页眉: index 首页/索引: logo 标志: nav/sub_nav 导航/子导航: banner 横幅广告: main/content 主体/内容 ...

  4. Python自动化--语言基础5--面向对象、迭代器、range和切片的区分

    面向对象 一.面向对象代码示例: 1 class Test(): #类的定义 2 car = "buick" #类变量,定义在类里方法外,可被对象直接调用,具有全局效果 3 def ...

  5. 对TCP三次握手四次分手还不清楚的速度进,超简单解析,明白了就很好记!

    关于TCP三次握手四次分手,之前看资料解释的都很笼统,很多地方都不是很明白,所以很难记,前几天看的一个博客豁然开朗,可惜现在找不到了.现在把之前的疑惑总结起来,方便一下大家. 先上个TCP三次握手和四 ...

  6. bzoj 3166 [Heoi2013]Alo 可持久化Trie

    3166: [Heoi2013]Alo Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1227  Solved: 569[Submit][Status ...

  7. JavaScript面向对象入门

    什么是JavaScript? 我们可以从几个方面去说JavaScript是什么: 基于对象 javaScript中内置了许多对象供我们使用[String.Date.Array]等等 javaScrip ...

  8. properties基本用法

    package control; import java.io.BufferedInputStream; import java.io.FileInputStream; import java.io. ...

  9. RGB与HSV之间的转换公式及颜色表

    RGB & HSV 英文全称 RGB - Red, Green, Blue HSV - Hue, Saturation, Value HSV --> RGB 转换公式 HSV --> ...

  10. react按需加载(getComponent优美写法),并指定输出模块名称解决缓存(getComponent与chunkFilename)

    react配合webpack进行按需加载的方法很简单,Route的component改为getComponent,组件用require.ensure的方式获取,并在webpack中配置chunkFil ...