【Luogu3808】多项式乘法FFT(FFT)
题目戳我
一道模板题
自己尝试证明了大部分。。。
剩下的还是没太证出来。。。
所以就是一个模板放在这里
以后再来补东西吧。。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
using namespace std;
#define MAX 2700000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
const double Pi=acos(-1);
int N,M,r[MAX],l;
complex<double> a[MAX],b[MAX];
void FFT(complex<double> *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
complex<double> W(cos(Pi/i),opt*sin(Pi/i));
for(int p=i<<1,j=0;j<N;j+=p)
{
complex<double> w(1,0);
for(int k=0;k<i;k++,w*=W)
{
complex<double> X=P[j+k],Y=w*P[j+k+i];
P[j+k]=X+Y;P[j+k+i]=X-Y;
}
}
}
}
int main()
{
N=read();M=read();
for(int i=0;i<=N;++i)a[i]=read();
for(int i=0;i<=M;++i)b[i]=read();
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);
FFT(b,1);
for(int i=0;i<=N;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<=M;++i)printf("%d ",(int)(a[i].real()/N+0.5));
return 0;
}
【Luogu3808】多项式乘法FFT(FFT)的更多相关文章
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- 多项式乘法,FFT与NTT
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...
- 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...
- UVALive - 6886 Golf Bot 多项式乘法(FFT)
题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...
- 多项式乘法(FFT)模板 && 快速数论变换(NTT)
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...
- 【UOJ 34】 多项式乘法 (FFT)
[题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...
- [洛谷P3803] 【模板】多项式乘法(FFT, NTT)
题目大意:$FFT$,给你两个多项式,请输出乘起来后的多项式. 题解:$FFT$,由于给的$n$不是很大,也可以用$NTT$做 卡点:无 C++ Code: FFT: #include <cs ...
随机推荐
- OpenSSL 中DES-ECB 加密使用注意事项
参考:http://blog.csdn.net/cparent/article/details/40652051DES加密算法作为一个过时的东西,使用的项目已经很少了.最近在调试与服务器端进行DES加 ...
- ansible安装
本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 1.配置epel源 wget -O /etc/yum.repos.d ...
- C#实现七牛云存储
云存储,就是把本地的资源文件存放至网络上,可以公网访问.相当于网盘功能,感觉非常方便. 这里介绍的是七牛云存储.有兴趣的可以去官方网站详看 根据官网的介绍,本身是提供SDK的,下载地址,大家可以根据自 ...
- 读《Linux Shell脚本攻略》(第2版) 总结
前段时间读完了<Linux Shell脚本攻略>(第2版)这本书,给部分想读这本书的人分享下个人感受. 说下这本书的难度吧.纯新手或者只懂少部分编程知识的人,读起来还是有很大难度的.以我为 ...
- web项目中js加载慢问题解决思路
最近使用Echarts地图(版本为echarts2,echarts3目前无法下载地图版). 问题描述:之前使用require形式加载,地图首次加载显示要6-7秒,难以接受. js配置代码如下: < ...
- 关于Properties类常用的操作
import java.io.*;import java.util.Enumeration;import java.util.Properties;/** * 关于Properties类常用的操作 * ...
- Python 关于super 的 用法和原理(挖坑)
一.前言 Python 面向对象中有继承这个概念,初学时感觉很牛逼,里面也有个super类,经常见到,最近做一些题才算是理解了.特地记录分享给后来研究的小伙伴,毕竟现在小学生都开始学了(滑稽脸) 二. ...
- Pymongo一些常见需求(陆续补充)
总结一下最近包括之前遇到的一些pymongo操作的问题. #需求1: 搜索文档数组里边是否存在某元素 数据: data1 = { '_id': xxxxxxxxxxxxxx, 'dataList': ...
- Linux sed 和 awk的用法
sed用法: 原文链接:http://www.cnblogs.com/dong008259/archive/2011/12/07/2279897.html sed是一个很好的文件处理工具,本身是一个管 ...
- Docker系列三:Docker容器管理
Docker容器管理 1. 单一容器管理 1) 容器的启动 $ docker run --name gitlab-redis -d --volume /srv/docker/gitlab/redis: ...