题目戳我

一道模板题

自己尝试证明了大部分。。。

剩下的还是没太证出来。。。

所以就是一个模板放在这里

以后再来补东西吧。。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
using namespace std;
#define MAX 2700000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
const double Pi=acos(-1);
int N,M,r[MAX],l;
complex<double> a[MAX],b[MAX];
void FFT(complex<double> *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
complex<double> W(cos(Pi/i),opt*sin(Pi/i));
for(int p=i<<1,j=0;j<N;j+=p)
{
complex<double> w(1,0);
for(int k=0;k<i;k++,w*=W)
{
complex<double> X=P[j+k],Y=w*P[j+k+i];
P[j+k]=X+Y;P[j+k+i]=X-Y;
}
}
}
} int main()
{
N=read();M=read();
for(int i=0;i<=N;++i)a[i]=read();
for(int i=0;i<=M;++i)b[i]=read();
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);
FFT(b,1);
for(int i=0;i<=N;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<=M;++i)printf("%d ",(int)(a[i].real()/N+0.5));
return 0;
}

【Luogu3808】多项式乘法FFT(FFT)的更多相关文章

  1. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  2. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  3. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  4. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  5. 多项式乘法,FFT与NTT

    多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...

  6. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  7. UVALive - 6886 Golf Bot 多项式乘法(FFT)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...

  8. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

  9. 【UOJ 34】 多项式乘法 (FFT)

    [题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...

  10. [洛谷P3803] 【模板】多项式乘法(FFT, NTT)

    题目大意:$FFT$,给你两个多项式,请输出乘起来后的多项式. 题解:$FFT$,由于给的$n$不是很大,也可以用$NTT$做 卡点:无 C++ Code:  FFT: #include <cs ...

随机推荐

  1. 01-vagrant安装centos7

    1. 安装VirtualBox 2. 安装Vagrant 3. 下载 centos-7.0-x86_64.box   [安装命令] $ mkdir vagrant $ cd vagrant $ vag ...

  2. css设置兼容的透明样式

    css设置透明并实现兼容: <style>div{ filter: alpha(opacity=80); -moz-opacity: 0.8; -khtml-opacity: 0.8; o ...

  3. 基于jq的表单填充

    //表单填充 formDataLoad: function (domId, obj) { for (var property in obj) { if (obj.hasOwnProperty(prop ...

  4. java 堆和栈

    转载自 http://blog.csdn.net/peterwin1987/article/details/7571808 博主讲的相当清楚吼吼吼

  5. linux开放80 端口

    1.使用su登录管理员用户 2.编辑防火墙配置文件 vim /etc/sysconfig/iptables 3.在里面加入后保存 #open port 80 -A INPUT -p TCP -m st ...

  6. XP环境下的网络证书问题

    项目过程中,由于是收银系统需要从服务器获取支付二维码,会产生SSL连接的问题,在win7.win10上都没有问题,放到WIN XP上出现了The underlying connection was c ...

  7. crontab定时任务(centos)

    cron服务是Linux的内置服务,但它不会开机自动启动.可以用以下命令启动和停止服务: /sbin/service crond start /sbin/service crond stop /sbi ...

  8. 在SpringBoot中配置aop

    前言 aop作为spring的一个强大的功能经常被使用,aop的应用场景有很多,但是实际的应用还是需要根据实际的业务来进行实现.这里就以打印日志作为例子,在SpringBoot中配置aop 已经加入我 ...

  9. jstree树形菜单

    final 用于声明属性.方法和类,分别表示属性不可变,方法不可重写,类不可继承.其实可以参考用easyui的tree 和 ztree参考: https://www.jstree.com/demo/ ...

  10. 恢复Mysql丢失的root用户权限

      今天安装了某个程序时, 由于程序很傻X的 新建了一个 root@localhost 用户 并把 root权限全部改为了 no 这下 我也 傻X 了.服务器上所有程序都崩溃了. 此时即使用root用 ...