[HNOI 2008]玩具装箱
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
3
4
2
1
4
Sample Output
题解
斜率优化$DP$。
之前有篇博文有详解=>戳我<=
我们写出原始转移方程:
f[i] = max(f[j]+sqr(sum[i]-sum[j]+i-j--l))
由于可以将常数约去,我们不妨只将与j有关的放在一起
f[i] = max(f[j]+sqr((sum[i]+i--l)-(sum[j]+j)))
那么就是之前的套路了。
化简后,我们可以设出
yi = f[i]+sqr(sum[i]+i)
xi = *(sum[i]+i)
单调队列维护下凸包即可。
#include <set>
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define g(i) (sum[i]+i-1-l)
#define k(i) (sum[i]+i)
#define y(i) (f[i]+sqr(k(i)))
#define x(i) (2*k(i))
#define sqr(x) ((x)*(x))
using namespace std;
const LL N = ; LL n, l, sum[N+];
LL q[N+], head, tail;
LL f[N+]; int main(){
scanf("%lld%lld", &n, &l);
for (LL i = ; i <= n; i++){
scanf("%lld", &sum[i]);
sum[i] += sum[i-];
}
q[tail++] = ;
for (LL i = ; i <= n; i++){
while (head < tail-)
if (g(i)*(x(q[head+])-x(q[head])) >= (y(q[head+])-y(q[head]))) head++;
else break;
f[i] = f[q[head]]+sqr(sum[i]-sum[q[head]]+i-q[head]--l);
while (head < tail-)
if ((y(q[tail-])-y(q[tail-]))*(x(i)-x(q[tail-])) >= (x(q[tail-])-x(q[tail-]))*(y(i)-y(q[tail-]))) tail--;
else break;
q[tail++] = i;
}
printf("%lld\n", f[n]);
return ;
}
[HNOI 2008]玩具装箱的更多相关文章
- [bzoj 1010][HNOI 2008]玩具装箱
传送门 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号 ...
- 解题:HNOI 2008 玩具装箱
题面 搞了一晚上斜率优化,大概懂了一点,写写 原来常用的优化dp方法:做前缀和,预处理,数据结构维护 现在有转移方程长这样的一类dp:$dp[i]=min(dp[i],k[i]*x[j]+y[j]+c ...
- BZOJ 1010 (HNOI 2008) 玩具装箱
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Submit: 12665 Solved: 5540 [Submit][S ...
- 玩具装箱&土地购买
今天一天8h 写了两道斜率优化的题(别问我效率为什么这么低 代码bug太多了) 关键是思考的不周全 估计是写的题少手生 以后就会熟练起来了吧. 这道题显然有一个n^2的dp方程 设f[i]表示前i件物 ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- C++之路进阶——codevs1319(玩具装箱)
1319 玩具装箱 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是 ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 【BZOJ】【1010】【HNOI2008】玩具装箱Toy
DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] ...
随机推荐
- Java基础学习笔记二十一 多线程
多线程介绍 学习多线程之前,我们先要了解几个关于多线程有关的概念.进程:进程指正在运行的程序.确切的来说,当一个程序进入内存运行,即变成一个进程,进程是处于运行过程中的程序,并且具有一定独立功能. 线 ...
- Leetcode 1——twosum
Given an array of integers, return indices of the two numbers such that they add up to a specific ta ...
- C语言程序设计(基础)- 第7周作业(新)
要求一(25经验值) 完成PTA中题目集名为<usth-C语言基础-第七周作业>和<usth-C语言基础-12周PTA作业>中的所有题目. 注意1:<usth-C语言基础 ...
- Software Engineering-HW8 个人总结
Software Engineering-HW8 个人总结 2017282110264 李世钰 一.请参考第一次作业,当初你对课程的承诺和期望都兑现了吗? 大致实现了.经过了最后的团队项目,基本了解一 ...
- bzoj千题计划219:bzoj1568: [JSOI2008]Blue Mary开公司
http://www.lydsy.com/JudgeOnline/problem.php?id=1568 写多了就觉着水了... #include<cstdio> #include< ...
- bzoj千题计划165:bzoj5127: 数据校验
http://www.lydsy.com/JudgeOnline/upload/201712/prob12.pdf 区间的任意一个子区间都满足值域连续 等价于 区间任意一个长为2的子区间都满足值域连续 ...
- prop attr 到底哪里不一样?
好吧 首先承认错误 说好的每天进行一次只是总结 但是我没坚持住 准确的来说 我并没有每天会学到了东西 但是 我一直在持续努力着 以后应该不会每天都写 但是自己觉得有用的 或者想加强记忆的 可 ...
- 【原创】Webpack构建中hash的优化
背景: SPA的vue应用,采用webpack2构建,打包入口为main.js 输出:main模块打包成app.js,公共lib打包成vendor.js,公共样式打包成app.css,运行时依赖打包成 ...
- 阿里云API网关(12)为员工创建子账号,实现分权管理API:使用RAM管理API
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- Spring Security入门(3-6)Spring Security 的鉴权 - 自定义权限前缀