bzoj 4830: [Hnoi2017]抛硬币
Description
小A和小B是一对好朋友,他们经常一起愉快的玩耍。最近小B沉迷于**师手游,天天刷本,根本无心搞学习。但是
已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生。勤勉的小A为了劝说小B早日脱坑,认真学习,决
定以抛硬币的形式让小B明白他是一个彻彻底底的非洲人,从而对这个游戏绝望。两个人同时抛b次硬币,如果小A
的正面朝上的次数大于小B正面朝上的次数,则小A获胜。但事实上,小A也曾经沉迷过拉拉游戏,而且他一次UR也
没有抽到过,所以他对于自己的运气也没有太大把握。所以他决定在小B没注意的时候作弊,悄悄地多抛几次硬币
,当然,为了不让小B怀疑,他不会抛太多次。现在小A想问你,在多少种可能的情况下,他能够胜过小B呢?由于
答案可能太大,所以你只需要输出答案在十进制表示下的最后k位即可。
solution
正解:扩展卢卡斯
因为 \(a-b\) 很小,考虑怎么把式子变成和 \(a-b\) 有关.
考虑 \(a=b\) 的情况,考虑结果只有输赢和平局三种,而且输赢是对称的,所以减去平局就是答案,所以答案为 \((2^{a+b}-C(2a,a))/2\).
\(a>b\) 时,同样存在对称性,对于正着会输,反过来就赢得情况,就是 \(2^{a+b}/2\) 种
对于正着反着都赢的情况还没有算进去:
\]
\]
\]
\]
对于除2,根据对称性,只算一半即可,注意偶数情况,存在一项需要手动除2,算2时在因子中减去,算5时直接乘逆元即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=2500005;
ll qm(ll x,ll k,ll MO){
ll sum=1;
while(k){
if(k&1)sum*=x,sum%=MO;
x*=x;x%=MO;k>>=1;
}
return sum;
}
ll v[2][N],mod,K;
void priwork(){
int lim=qm(2,9,N);
v[0][0]=v[1][0]=1;
for(RG int i=1;i<=lim;i++){
v[0][i]=v[0][i-1]*((i&1)?i:1);
v[0][i]%=lim;
}
lim=qm(5,9,N);
for(RG int i=1;i<=lim;i++){
v[1][i]=v[1][i-1]*((i%5)?i:1);
v[1][i]%=lim;
}
}
inline void exgcd(ll a,ll b,ll &x,ll &y){
if(!b)x=1,y=0;
else exgcd(b,a%b,y,x),y-=a/b*x;
}
inline ll ni(ll a,ll b){
ll x,y;
exgcd(a,b,x,y);
x%=b;if(x<0)x+=b;
return x;
}
inline ll Fac(ll n,ll p,ll pr){
if(n==0)return 1;
ll re=v[p!=2][pr]%pr;
re=qm(re,n/pr,pr);
ll r=n%pr;
re=re*v[p!=2][r]%pr;
return re*Fac(n/p,p,pr)%pr;
}
inline ll C(ll n,ll m,ll p,ll pr,bool t){
if(n<m)return 0;
ll c=0;
for(RG ll i=n;i;i/=p)c+=(i/p);
for(RG ll i=m;i;i/=p)c-=(i/p);
for(RG ll i=n-m;i;i/=p)c-=(i/p);
if(t && p==2)c--;
if(c>=K)return 0;
ll x=Fac(n,p,pr),y=Fac(m,p,pr),z=Fac(n-m,p,pr);
ll re=x*ni(y,pr)%pr*ni(z,pr)%pr*qm(p,c,pr)%pr;
if(t && p==5)re=re*ni(2,pr)%pr;
return (mod/pr)*ni(mod/pr,pr)%mod*re%mod;
}
inline ll lucas(ll n,ll m,ll k,bool t){
ll MOD=qm(2,k,N),re=0;
re=(re+C(n,m,2,MOD,t))%mod;
MOD=qm(5,k,N);
re=(re+C(n,m,5,MOD,t))%mod;
return re;
}
ll work(ll n,ll m,ll k)
{
ll ans=0;mod=qm(10,k,1e9+5);
if(n==m)
return ((qm(2,n+m-1,mod)-lucas(n+m,n,k,1))%mod+mod)%mod;
for(ll i=(n+m)/2+1;i<n;i++){
ans+=lucas(n+m,i,k,0);
ans%=mod;
}
if((n+m)%2==0)ans=(ans+lucas(n+m,(n+m)/2,k,1)%mod+mod)%mod;
return (qm(2,n+m-1,mod)+ans)%mod;
}
inline void Print(ll x,ll c){
if(c==1)printf("%lld\n",x);if(c==2)printf("%02lld\n",x);
if(c==3)printf("%03lld\n",x);if(c==4)printf("%04lld\n",x);
if(c==5)printf("%05lld\n",x);if(c==6)printf("%06lld\n",x);
if(c==7)printf("%07lld\n",x);if(c==8)printf("%08lld\n",x);
if(c==9)printf("%09lld\n",x);
}
int main()
{
priwork();
ll a,b,c,d;
while(~scanf("%lld%lld%lld",&a,&b,&c)){
K=c;d=work(a,b,c);
Print(d,c);
}
return 0;
}
bzoj 4830: [Hnoi2017]抛硬币的更多相关文章
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 【刷题】BZOJ 4830 [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- [HNOI2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于××师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [luogu3726 HNOI2017] 抛硬币 (拓展lucas)
传送门 数学真的太优秀了Orz 数据真的太优秀了Orz 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月, ...
- [AH2017/HNOI2017]抛硬币(扩展lucas)
推式子+exlucas. 题意: 小 A 和小 B 是一对好朋友,两个人同时抛 b 次硬币,如果小 A 的正面朝上的次数大于小 B 正面朝上的次数,则小 A 获胜. 小 A 决定在小 B 没注意的时候 ...
随机推荐
- spring框架学习笔记5:SpringAOP示例
1.导包: 导入spring中的这两个包 再导入其他包(网上下载): 2.准备目标对象: package service; public class UserServiceImpl implement ...
- JavaScript(第十五天)【匿名函数和闭包】
学习要点: 1.匿名函数 2.闭包 匿名函数就是没有名字的函数,闭包是可访问一个函数作用域里变量的函数.声明:本节内容需要有面向对象和少量设计模式基础,否则无法听懂.(所需基础15章的时候已经声明 ...
- C语言程序设计课程总结
第一次教授C语言程序设计课程,相比计算机组成原理.arm体系结构等偏向硬件的课程,C的教学方式要灵活一些.计算机组成原理课程偏向理论,哈尔滨工业大学的计算机组成原理是国家精品课,增加了mooc+spo ...
- 关于python中argsort()函数的使用
在实现<机器学习实战>中kNN代码时遇到需要将计算好的距离进行排序,即可使用argsort()函数,在此依据个人理解对该函数进行简单的介绍. 总的来说,argsort()函数是对数组中的元 ...
- Bate版敏捷冲刺报告--day0
1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285) Git链接:https://github.com/WHUSE2017/C-team 2 ...
- 201621123057 《Java程序设计》第4周学习总结
1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 答: (普通方法 / 构造函数)重载. static . final.继承与多态.extends.object类.abstrac ...
- mongodb 复制(副本集)
复制(副本集) 什么是复制 复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性,并可以保证数据的安全性 复制还允许从硬件故障和服务中断中恢复数据 为什么要复制 数据备份 数据灾 ...
- Beta冲刺Day1
项目进展 李明皇 今天解决的进度 点击首页list相应条目将信息传到详情页 明天安排 优化信息详情页布局 林翔 今天解决的进度 前后端连接成功 明天安排 开始微信前端+数据库写入 孙敏铭 今天解决的进 ...
- Flask 扩展 缓存
如果同一个请求会被多次调用,每次调用都会消耗很多资源,并且每次返回的内容都相同,就该使用缓存了 自定义缓存装饰器 在使用Flask-Cache扩展实现缓存功能之前,我们先来自己写个视图缓存装饰器,方便 ...
- css中的position
一.position语法与结构 position语法: position : static absolute relative position参数:static : 无特殊定位,对象遵循HTML定位 ...