●BZOJ 1797 [Ahoi2009]Mincut 最小割
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=1797
题解:
详细的讲解去看http://hzwer.com/3217.html
首先跑一个最小割。
那么剩下的就是一个结论的事了:
对残余网络跑一个Tarjan缩点,
1).对于一条满载边u->v,u->v能够出现在某个最小割集中,当且仅当u,v不属于同一个SCC;
2).对于一条满载边u->v,u->v必定出现在最小割集中,当且仅当u,v分别在S,T的SCC中。(u,v必然不在一个SCC中)
代码:
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 4500
#define MAXM 125000
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int from[MAXM],to[MAXM],cap[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){
ent=2;
memset(head,0,sizeof(head));
}
void Adde(int u,int v,int w){
from[ent]=u; to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
from[ent]=v; to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int dfn[MAXN],low[MAXN],bel[MAXN],sta[MAXN],tim,top,cnt;
int cur[MAXN],d[MAXN];
bool ins[MAXN];
int N,M,S,T;
bool bfs(){
queue<int> q;
memset(d,0,sizeof(d));
d[S]=1; q.push(S); int u,v;
while(!q.empty()){
u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f,v;
for(int &i=cur[u];i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int Dinic(){
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
void Tarjan(int u){
dfn[u]=low[u]=++tim; sta[++top]=u; ins[u]=1;
for(int i=E.Next(u,1);i;i=E.Next(i,0)) if(E.cap[i]){
int v=E.to[i];
if(!dfn[v]) Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]!=low[u]) return;
cnt++; int v;
do{
v=sta[top--];
bel[v]=cnt; ins[v]=0;
}while(v!=u);
}
int main()
{ E.Init();
scanf("%d%d%d%d",&N,&M,&S,&T);
for(int a,b,c,i=1;i<=M;i++)
scanf("%d%d%d",&a,&b,&c),E.Adde(a,b,c);
int ans=Dinic();
for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i);
for(int i=2,u,v;i<2*M+2;i+=2){
u=E.from[i]; v=E.to[i];
if(E.cap[i]||bel[u]==bel[v]) printf("0 0\n");//important
else{
printf("1 ");
if((bel[u]==bel[S]&&bel[v]==bel[T])||(bel[u]==bel[T]&&bel[v]==bel[S]))
printf("1\n");
else printf("0\n");
}
}
return 0;
}
●BZOJ 1797 [Ahoi2009]Mincut 最小割的更多相关文章
- BZOJ 1797: [Ahoi2009]Mincut 最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2076 Solved: 885[Submit] ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )
先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...
- bzoj 1797: [Ahoi2009]Mincut 最小割【tarjan+最小割】
先跑一遍最大流,然后对残量网络(即所有没有满流的边)进行tarjan缩点. 能成为最小割的边一定满流:因为最小割不可能割一半的边: 连接s.t所在联通块的满流边一定在最小割里:如果不割掉这条边的话,就 ...
- bzoj 1797: [Ahoi2009]Mincut 最小割 (网络流)
太神了直接看了hzwer的题解,有个新认识,一条路径上满流的一定是这条路径上所有边的最小值. type arr=record toward,next,cap,from:longint; end; co ...
- 1797: [Ahoi2009]Mincut 最小割
1797: [Ahoi2009]Mincut 最小割 链接 分析: 题意为:问一条边是否可能存在于最小割中,是否一定存在于最小割中. 首先最小割的边一定是满流的边.且这条边点两个端点u.v中,至少一个 ...
- bzoj1797: [Ahoi2009]Mincut 最小割
最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...
- bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)
1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...
- BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan
BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...
- 【bzoj1797】 Ahoi2009—Mincut 最小割
http://www.lydsy.com/JudgeOnline/problem.php?id=1797 (题目链接) 题意 求一条边是否可能在一个最小割集中,以及这条边是否一定在最小割集中. Sol ...
随机推荐
- TensorFlow实现Softmax Regression识别手写数字中"TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败”问题
出现问题: 在使用TensorFlow实现MNIST手写数字识别时,出现"TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应 ...
- Alpha冲刺置顶随笔
项目名称:城市安全风险管控系统 小组成员: 张梨贤.林静.周静平.黄腾飞 Alpha冲刺随笔 Alpha冲刺Day1:http://www.cnblogs.com/linlkg/p/7896980.h ...
- 获取android项目的数据库地址或者数据库名
你不需要知道该路径.只是使用数据库,你可以将它们删除的列表. for (String databaseName : context.databaseList()) { context.deleteDa ...
- 算法第四版 coursera公开课 普林斯顿算法 ⅠⅡ部分 Robert Sedgewick主讲《Algorithms》
这是我在网上找到的资源,下载之后上传到我的百度网盘了. 包含两部分:1:算法视频的种子 2:字幕 下载之后,请用迅雷播放器打开,因为迅雷可以直接在线搜索字幕. 如果以下链接失效,请在下边留言,我再更新 ...
- Hibernate之Hibernate的体系结构
体系结构简图: 这是一张体系结构的简图,其中的hibernate.properties文件的作用相当于配置文件hibernate.cfg.xml XML Mapping对应的就是映射文件 XXXX.h ...
- bzoj千题计划275:bzoj4817: [Sdoi2017]树点涂色
http://www.lydsy.com/JudgeOnline/problem.php?id=4817 lct+线段树+dfs序 操作1:access 操作2:u到根的-v到根的-lca到根的*2+ ...
- Visual Studio 开发工具常用的插件
转载自落日故乡 http://www.spersky.com/post/vsPlugins.html 该博客中收集整理归纳了若干个常用的vs插件,比如高亮显示当前选择,垂直辅助线,折叠代码等等,具体 ...
- Nginx负载均衡(架构之路)
[前言] 在大型网站中,负载均衡是有想当必要的.尤其是在同一时间访问量比较大的大型网站,例如网上商城,新闻等CMS系统,为了减轻单个服务器的处理压力,我们引进了负载均衡这一个概念,将一个服务器的压力分 ...
- python3下搜狗AI API实现
1.背景 a.搜狗也发布了自己的人工智能 api,包括身份证ocr.名片ocr.文本翻译等API,初试感觉准确率一般般. b.基于python3. c.也有自己的签名生成这块,有了鹅厂的底子,相对写起 ...
- MYSQL之索引原理与慢查询优化
一.索引 1.介绍 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的也是最容易出现问题的,还是一些复杂的查询操作,因此对查询语句的优化 ...