题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=1797

题解:

详细的讲解去看http://hzwer.com/3217.html
首先跑一个最小割。
那么剩下的就是一个结论的事了:
对残余网络跑一个Tarjan缩点,
1).对于一条满载边u->v,u->v能够出现在某个最小割集中,当且仅当u,v不属于同一个SCC;
2).对于一条满载边u->v,u->v必定出现在最小割集中,当且仅当u,v分别在S,T的SCC中。(u,v必然不在一个SCC中)

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 4500
#define MAXM 125000
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int from[MAXM],to[MAXM],cap[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){
ent=2;
memset(head,0,sizeof(head));
}
void Adde(int u,int v,int w){
from[ent]=u; to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
from[ent]=v; to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int dfn[MAXN],low[MAXN],bel[MAXN],sta[MAXN],tim,top,cnt;
int cur[MAXN],d[MAXN];
bool ins[MAXN];
int N,M,S,T;
bool bfs(){
queue<int> q;
memset(d,0,sizeof(d));
d[S]=1; q.push(S); int u,v;
while(!q.empty()){
u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f,v;
for(int &i=cur[u];i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int Dinic(){
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
void Tarjan(int u){
dfn[u]=low[u]=++tim; sta[++top]=u; ins[u]=1;
for(int i=E.Next(u,1);i;i=E.Next(i,0)) if(E.cap[i]){
int v=E.to[i];
if(!dfn[v]) Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]!=low[u]) return;
cnt++; int v;
do{
v=sta[top--];
bel[v]=cnt; ins[v]=0;
}while(v!=u);
}
int main()
{ E.Init();
scanf("%d%d%d%d",&N,&M,&S,&T);
for(int a,b,c,i=1;i<=M;i++)
scanf("%d%d%d",&a,&b,&c),E.Adde(a,b,c);
int ans=Dinic();
for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i);
for(int i=2,u,v;i<2*M+2;i+=2){
u=E.from[i]; v=E.to[i];
if(E.cap[i]||bel[u]==bel[v]) printf("0 0\n");//important
else{
printf("1 ");
if((bel[u]==bel[S]&&bel[v]==bel[T])||(bel[u]==bel[T]&&bel[v]==bel[S]))
printf("1\n");
else printf("0\n");
}
}
return 0;
}

●BZOJ 1797 [Ahoi2009]Mincut 最小割的更多相关文章

  1. BZOJ 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2076  Solved: 885[Submit] ...

  2. BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )

    先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...

  3. bzoj 1797: [Ahoi2009]Mincut 最小割【tarjan+最小割】

    先跑一遍最大流,然后对残量网络(即所有没有满流的边)进行tarjan缩点. 能成为最小割的边一定满流:因为最小割不可能割一半的边: 连接s.t所在联通块的满流边一定在最小割里:如果不割掉这条边的话,就 ...

  4. bzoj 1797: [Ahoi2009]Mincut 最小割 (网络流)

    太神了直接看了hzwer的题解,有个新认识,一条路径上满流的一定是这条路径上所有边的最小值. type arr=record toward,next,cap,from:longint; end; co ...

  5. 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 链接 分析: 题意为:问一条边是否可能存在于最小割中,是否一定存在于最小割中. 首先最小割的边一定是满流的边.且这条边点两个端点u.v中,至少一个 ...

  6. bzoj1797: [Ahoi2009]Mincut 最小割

    最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...

  7. bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)

    1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...

  8. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

  9. 【bzoj1797】 Ahoi2009—Mincut 最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=1797 (题目链接) 题意 求一条边是否可能在一个最小割集中,以及这条边是否一定在最小割集中. Sol ...

随机推荐

  1. Linux下C编写基本的多线程socket服务器

    不想多说什么,会搜这些东西的都是想看代码的吧. 一开始不熟悉多线程的时候还在想怎么来控制一个线程的结束,后来发现原来有pthread_exit()函数可以直接在线程函数内部调用结束这个线程. 开始还想 ...

  2. django的模板(二)

    模板(二) 实验简介 本节继续介绍模板的常用标签,for.if.ifequal和注释标签. 一.基本的模板标签和过滤器 1. 标签 if/else {% if %} 标签检查(evaluate)一个变 ...

  3. 翻译:CREATE FUNCTION语句(已提交到MariaDB官方手册)

    本文为mariadb官方手册:CREATE FUNCTION的译文. 原文:https://mariadb.com/kb/en/library/create-function/我提交到MariaDB官 ...

  4. Python内置函数(20)——hex

    英文文档: hex(x) Convert an integer number to a lowercase hexadecimal string prefixed with "0x" ...

  5. jquery实现对div的拖拽功能

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. 新概念英语(1-139)Is that you, John?

    Lesson 139 Is that you, John? 是你吗,约翰? Listen to the tape then answer this question. Which John Smith ...

  7. angular2 学习笔记 ( 第3方插件 jQuery and ckeditor )

    refer : https://forums.meteor.com/t/importing-ckeditor-using-npm/28919/2   (ckeditor) https://github ...

  8. 阿里云API网关(11)外网访问 阿里云API网关内定义的API步骤:

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  9. ELK学习总结(1-3)倒排索引

    1.倒排索引(反向索引) 一种索引方法,用来存储在全文检索下某个单词在一个/组文档中的存储位置. 常规索引,文档->关键词,费时,得把一个文档全部遍历一遍 倒排索引,关键词->文档,全文搜 ...

  10. 前端之BOM和DOM

    BOM和DOM简介 BOM(Browser Object Model)是指浏览器对象模型,它使JavaScript有能力与浏览器进行“对话”. DOM(Document Object Model)是指 ...