●BZOJ 1797 [Ahoi2009]Mincut 最小割
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=1797
题解:
详细的讲解去看http://hzwer.com/3217.html
首先跑一个最小割。
那么剩下的就是一个结论的事了:
对残余网络跑一个Tarjan缩点,
1).对于一条满载边u->v,u->v能够出现在某个最小割集中,当且仅当u,v不属于同一个SCC;
2).对于一条满载边u->v,u->v必定出现在最小割集中,当且仅当u,v分别在S,T的SCC中。(u,v必然不在一个SCC中)
代码:
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 4500
#define MAXM 125000
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int from[MAXM],to[MAXM],cap[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){
ent=2;
memset(head,0,sizeof(head));
}
void Adde(int u,int v,int w){
from[ent]=u; to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
from[ent]=v; to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int dfn[MAXN],low[MAXN],bel[MAXN],sta[MAXN],tim,top,cnt;
int cur[MAXN],d[MAXN];
bool ins[MAXN];
int N,M,S,T;
bool bfs(){
queue<int> q;
memset(d,0,sizeof(d));
d[S]=1; q.push(S); int u,v;
while(!q.empty()){
u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f,v;
for(int &i=cur[u];i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int Dinic(){
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
void Tarjan(int u){
dfn[u]=low[u]=++tim; sta[++top]=u; ins[u]=1;
for(int i=E.Next(u,1);i;i=E.Next(i,0)) if(E.cap[i]){
int v=E.to[i];
if(!dfn[v]) Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]!=low[u]) return;
cnt++; int v;
do{
v=sta[top--];
bel[v]=cnt; ins[v]=0;
}while(v!=u);
}
int main()
{ E.Init();
scanf("%d%d%d%d",&N,&M,&S,&T);
for(int a,b,c,i=1;i<=M;i++)
scanf("%d%d%d",&a,&b,&c),E.Adde(a,b,c);
int ans=Dinic();
for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i);
for(int i=2,u,v;i<2*M+2;i+=2){
u=E.from[i]; v=E.to[i];
if(E.cap[i]||bel[u]==bel[v]) printf("0 0\n");//important
else{
printf("1 ");
if((bel[u]==bel[S]&&bel[v]==bel[T])||(bel[u]==bel[T]&&bel[v]==bel[S]))
printf("1\n");
else printf("0\n");
}
}
return 0;
}
●BZOJ 1797 [Ahoi2009]Mincut 最小割的更多相关文章
- BZOJ 1797: [Ahoi2009]Mincut 最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2076 Solved: 885[Submit] ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )
先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...
- bzoj 1797: [Ahoi2009]Mincut 最小割【tarjan+最小割】
先跑一遍最大流,然后对残量网络(即所有没有满流的边)进行tarjan缩点. 能成为最小割的边一定满流:因为最小割不可能割一半的边: 连接s.t所在联通块的满流边一定在最小割里:如果不割掉这条边的话,就 ...
- bzoj 1797: [Ahoi2009]Mincut 最小割 (网络流)
太神了直接看了hzwer的题解,有个新认识,一条路径上满流的一定是这条路径上所有边的最小值. type arr=record toward,next,cap,from:longint; end; co ...
- 1797: [Ahoi2009]Mincut 最小割
1797: [Ahoi2009]Mincut 最小割 链接 分析: 题意为:问一条边是否可能存在于最小割中,是否一定存在于最小割中. 首先最小割的边一定是满流的边.且这条边点两个端点u.v中,至少一个 ...
- bzoj1797: [Ahoi2009]Mincut 最小割
最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...
- bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)
1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...
- BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan
BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...
- 【bzoj1797】 Ahoi2009—Mincut 最小割
http://www.lydsy.com/JudgeOnline/problem.php?id=1797 (题目链接) 题意 求一条边是否可能在一个最小割集中,以及这条边是否一定在最小割集中. Sol ...
随机推荐
- numpy.random.seed()方法
先贴参考链接: https://stackoverflow.com/questions/21494489/what-does-numpy-random-seed0-do numpy.random.se ...
- vim配置强悍来袭
vim 这个关键字,我不想再过多的解释,相信看到这里的同仁,对vim都有十七八分的理解,如果你还不知道vim是什么,自己找个黑屋子... 废话不多说,今天在这里主要说vim的,不带插件的配置,也就 ...
- CPP 栈 示例
#include<iostream> #include<stdlib.h> using namespace std; typedef struct node { int dat ...
- 算法第四版学习笔记之优先队列--Priority Queues
软件:DrJava 参考书:算法(第四版) 章节:2.4优先队列(以下截图是算法配套视频所讲内容截图) 1:API 与初级实现 2:堆得定义 3:堆排序 4:事件驱动的仿真 优先队列最重要的操作就是删 ...
- DML数据操作语言之常用函数
所谓函数,就是输入某一值,得到相应的输出结果的功能.相当于一个加工厂,给了原料,最终产出成品. 其中原料 就是参数(parameter). 产品 就是返回值. 函数大致可以分为以下五个种类: 算术函数 ...
- Hibernate之深入Hibernate的映射文件
这周周末 要把hibernate的映射文件搞定 .. 1.映射文件的主结构 主要结构 :根元素为<hibernate-mapping ></hibernate-mapping> ...
- Browser Object Model
BOM:浏览器提供的一系列对象 window对象是BOM最顶层对象 * 计时器setInterval(函数,时间)设置计时器 时间以毫秒为单位 clearInterval(timer) 暂停计时器se ...
- python time、datetime、random、os、sys模块
一.模块1.定义模块:用来从逻辑上组织Python代码(变量,函数,类,逻辑:实现一个功能),本质就是.py结尾的python文件(文件名:test.py,对应的模块名:test)包:用来从逻辑上组织 ...
- 网络IO超时的几种实现
一.select/poll/epoll int select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,str ...
- Dictionary导致CPU暴涨
中午吃完饭回来,刚想眯一会,突然发现公司预警群报警,某台机器CPU100%,连续三次报警,心里咯噔一下,我新开发的程序就在这上面,是不是我的程序导致的?立马远程,oh my god,果然是. 二话不说 ...