[ZJOI2009]染色游戏
Description
Input
Output
Sample Input
3
HHH
HHH
2 3
HHH
TTH
2 1
T
H
Sample Output
- -
- -
HINT
对于40% 的数据,满足1 ≤ n;m ≤ 5。
对于100% 的数据,满足1 ≤ n;m ≤ 100,1 ≤ T ≤ 50。
先考虑一维
SG[i]为单独考虑只有i是反面,其他都是正面的SG值,这样原情况可以转化为很多子游戏
假设要求SG[3]
也就是001
有这么几种:000 010 110
SG[3]=mex{0,2,2^1}=1
SG(4) = mex{0, 1, 1 XOR 2, 1 XOR 2 XOR 1} = 4;
SG(5) = mex(0, 4, 4 XOR 1, 4 XOR 1 XOR 2, 4 XOR 1 XOR 2 XOR 1) = 1;
枚举了很多SG发现SG[n]=lowbit(n)
将类似的方法拓展到2维:
要求SG[2][2],也就是
归纳得出,在i,j都大于1时,SG[i][j]=2i+j-2
在i或j为0时,为一维的算法
优于2200过大,所以用二进制存储
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Num
{
int a[];
}SG[][],ans;
int n,m,flag;
char s[];
Num operator ^(const Num &A,const Num &B)
{int i;
Num C;
memset(C.a,,sizeof(C.a));
for (i=;i<=;i++)
if (A.a[i]!=B.a[i]) C.a[i]=;
return C;
}
int lowbit(int x)
{
return x&(-x);
}
void getSG()
{int i,j;
SG[][].a[]=;
for (i=;i<=;i++)
{
int x=lowbit(i);
for (j=;j<=;j++)
if ((<<j)==x)
SG[][i].a[j]=SG[i][].a[j]=;
}
for (i=;i<=;i++)
{
for (j=;j<=;j++)
{
SG[i][j].a[i+j-]=;
}
}
}
int main()
{int T,i,j;
cin>>T;
getSG();
while (T--)
{
cin>>n>>m;
memset(ans.a,,sizeof(ans.a));
for (i=;i<=n;i++)
{
scanf("%s",s+);
for (j=;j<=m;j++)
{
if (s[j]=='T') ans=ans^SG[i][j];
}
}
flag=;
for (i=;i<=;i++)
if (ans.a[i])
{flag=;break;}
if (flag) printf("-_-\n");
else printf("=_=\n");
}
}
[ZJOI2009]染色游戏的更多相关文章
- 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
[BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...
- BZOJ1434:[ZJOI2009]染色游戏(博弈论)
Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...
- bzoj1434 [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
- BZOJ 1434: [ZJOI2009]染色游戏
一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...
- [luogu2594 ZJOI2009]染色游戏(博弈论)
传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...
- luogu2594 [ZJOI2009]染色游戏
做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...
- BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 897 Solved: 394[Submit][Status ...
- bzoj1411: [ZJOI2009]硬币游戏
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 965 Solved: 420[Submit][Status ...
- 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles
E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...
随机推荐
- 张旭升20162329 2006-2007-2 《Java程序设计》第一周学习总结
20162329 2006-2007-2 <Java程序设计>第一周学习总结 教材学习内容总结 通过打书上的代码熟悉了Java编程的基本过程 教材学习中的问题和解决过程 1.因为我的虚拟机 ...
- 高校学生征信系统Postmortem结果
Postmortem结果 设想和目标 1 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件需要解决的问题是当前高校学生征信系统建设薄弱的问题,我们试图建立 ...
- PTA题目的處理(四)
题目7-3 求交错序列前N项和 1.实验代码 #include <stdio.h> //#include <stdlib.h> int main() { ,N; double ...
- Linux中Eclipse下搭建Web开发环境
0. 准备工作 java环境,Linux下基本上都有含开源jdk的库,可直接下载,且不用配置环境变量,当然也可以官网下载后自己配置: Eclipse Neon,注意看清是64位还是32位,下载的应该是 ...
- 【Swift】iOS裁剪或者压缩后出现的白边问题
只需要将所有的CGFloat转化为NSInteger即可 func imageScaleSize(newSize: CGSize) -> UIImage{ let width = NSInteg ...
- 20145237 《Java程序设计》第八周学习总结
20145237 <Java程序设计>第八周学习总结 教材学习内容总结 第十五章 通用API 15.1 日志 日志API简介 • java.util.logging包提供了日志功能相关类与 ...
- DML数据操作语言之增加,删除,更新
1.数据的增加 数据的增加要用到insert语句 ,基本格式是: insert into <表名> (列名1,列名2,列名3,......) values (值1,值2,值3,..... ...
- 51Nod P1100 斜率最大
传送门: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1100 由于2 <= N <= 10000, 所以 ...
- bzoj 4399 魔法少女LJJ
4399: 魔法少女LJJ Time Limit: 20 Sec Memory Limit: 162 MBhttp://www.lydsy.com/JudgeOnline/problem.php?i ...
- 使用ArrayList时代码内部发生了什么(jdk1.7)?
前言 ArrayList(这里的ArrayList是基于jdk1.7)是在项目中经常使用的集合类,例如我们从数据库中查询出一组数据.这篇文章不去剖析它的继承和实现,只是让我们知道实例化及增删改查时它的 ...