[ZJOI2009]染色游戏
Description
Input
Output
Sample Input
3
HHH
HHH
2 3
HHH
TTH
2 1
T
H
Sample Output
- -
- -
HINT
对于40% 的数据,满足1 ≤ n;m ≤ 5。
对于100% 的数据,满足1 ≤ n;m ≤ 100,1 ≤ T ≤ 50。
先考虑一维
SG[i]为单独考虑只有i是反面,其他都是正面的SG值,这样原情况可以转化为很多子游戏
假设要求SG[3]
也就是001
有这么几种:000 010 110
SG[3]=mex{0,2,2^1}=1

SG(4) = mex{0, 1, 1 XOR 2, 1 XOR 2 XOR 1} = 4;

SG(5) = mex(0, 4, 4 XOR 1, 4 XOR 1 XOR 2, 4 XOR 1 XOR 2 XOR 1) = 1;
枚举了很多SG发现SG[n]=lowbit(n)
将类似的方法拓展到2维:
要求SG[2][2],也就是

归纳得出,在i,j都大于1时,SG[i][j]=2i+j-2
在i或j为0时,为一维的算法
优于2200过大,所以用二进制存储
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Num
{
int a[];
}SG[][],ans;
int n,m,flag;
char s[];
Num operator ^(const Num &A,const Num &B)
{int i;
Num C;
memset(C.a,,sizeof(C.a));
for (i=;i<=;i++)
if (A.a[i]!=B.a[i]) C.a[i]=;
return C;
}
int lowbit(int x)
{
return x&(-x);
}
void getSG()
{int i,j;
SG[][].a[]=;
for (i=;i<=;i++)
{
int x=lowbit(i);
for (j=;j<=;j++)
if ((<<j)==x)
SG[][i].a[j]=SG[i][].a[j]=;
}
for (i=;i<=;i++)
{
for (j=;j<=;j++)
{
SG[i][j].a[i+j-]=;
}
}
}
int main()
{int T,i,j;
cin>>T;
getSG();
while (T--)
{
cin>>n>>m;
memset(ans.a,,sizeof(ans.a));
for (i=;i<=n;i++)
{
scanf("%s",s+);
for (j=;j<=m;j++)
{
if (s[j]=='T') ans=ans^SG[i][j];
}
}
flag=;
for (i=;i<=;i++)
if (ans.a[i])
{flag=;break;}
if (flag) printf("-_-\n");
else printf("=_=\n");
}
}
[ZJOI2009]染色游戏的更多相关文章
- 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
[BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...
- BZOJ1434:[ZJOI2009]染色游戏(博弈论)
Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...
- bzoj1434 [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
- BZOJ 1434: [ZJOI2009]染色游戏
一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...
- [luogu2594 ZJOI2009]染色游戏(博弈论)
传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...
- luogu2594 [ZJOI2009]染色游戏
做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...
- BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 897 Solved: 394[Submit][Status ...
- bzoj1411: [ZJOI2009]硬币游戏
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 965 Solved: 420[Submit][Status ...
- 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles
E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...
随机推荐
- 利用PCA降维
参考:<机器学习实战>- Machine Learning in Action 一. 基本思想 PCA(Principal Component Analysis),主成分分析.是目前应用 ...
- Beta敏捷冲刺每日报告——Day1
1.情况简述 Beta阶段Scrum Meeting 敏捷开发起止时间 2017.11.2 00:00 -- 2017.11.3 00:00 讨论时间地点 2017.11.2 晚9:30,电话会议会议 ...
- socket_sever实现多客户端并发
#!/usr/bin/env python # -*- coding:utf-8 -*- import socketserver class mysever(socketserver.BaseRequ ...
- 基于Unity·UGUI实现的RecycleList循环列表UI容器
在UI功能开发实践中,列表UI容器是我们经常使用一种UI容器组件.这种组件就根据输入的数据集合生成对应数据项目.从显示的方向来说,一般就分为水平排布和垂直排布的列表容器两种.列表容器为了在有限的界面空 ...
- wyh的数列~(坑爹题目)
链接:https://www.nowcoder.com/acm/contest/93/K来源:牛客网 题目描述 wyh学长特别喜欢斐波那契数列,F(0)=0,F(1)=1,F(n)=F(n-1)+F( ...
- python django的ManyToMany简述
Django的多对多关系 在Django的关系中,有一对一,一对多,多对多的关系 我们这里谈的是多对多的关系 ==我们首先来设计一个用于示例的表结构== # -*- coding: utf-8 -*- ...
- JAVA版exe可执行加密软件
1.现在eclipse(myeclipse)中插入以下代码 1.1 MainForm package cee.hui.myfile; import javax.swing.*; import java ...
- mosquitto验证client互相踢
cleint11A订阅topic#################################################### server发送topic消息 ############### ...
- 阿里云API网关(9)常见问题
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- 刨析Maven(对pom.xml配置文件常用标签的解析)
昨天在阿里云看到了一句话,"当你Learning和Trying之后,如果能尽量把Teaching也做好,会促进我们思考".共勉! 这是关于Maven的第三篇博客,这次我们深入了解p ...