凸包--Graham扫描法
一直听大佬们说:凸包、凸包、凸包
一直不会。。。。。
然后。。。。
今天考试,考了一道计算几何的简单题。。。。
这,,,还是学一下吧。。
然后考试现场学习一下凸包算法。
先理解一下凸包是啥东西。
看看这张图
解释一下凸包是什么
如果你有一堆点(原谅我画的很凌乱)
那么,找到一个点集
依次连接这些点
使他们形成一个凸多边形
并且所有的点都包括在这个多边形的内部或者边上
这个多边形就是一个凸包(我写的肯定一点也不严谨)
不管怎么样,就先这样理解一下吧。。。。。。
凸包是啥应该不难理解,那么,给你一堆点,怎么求凸包?
这种东西。。。。。
先大概说一下把。。。
首先找到最靠近左下的那个点,这个点一定在凸包上(不难理解吧。。。画个图就知道了)
以这个点为极点,其他点按照极角排序
然后按照顺序依次访问所有点,判断可行性
这样子干说真是虚无缥缈的东西。。。。。。
画图来解释
这是一片点。
找到最靠近左下的一个点
其他的点按照极角排序
然后把1丢到凸包的栈里面,准备开始扫描
检查2号点是否在1的一侧,(检查一下是不是凸多边形)
这里检查到2号可行,先加入到栈中
检查到3更加靠近外侧(如果加入3号就会形成凹多边形,显然3在凸包中,而2不在)
然后把2号点弹出栈,判断1号和3号节点的关系(同判断2号)
依次这么判断,最后所有凸包上的点都会在栈中
这样子算法的步骤很显然了。
继续解决一些细节上的问题(貌似就一个把。。。。)
怎么计算一个节点是否在前一个点的一侧。。。。
(我说的好不专业。。。我自己都不知道该怎么说一些名词。。。就将就着理解一下吧。。。)
我们先拿几个点出来
其中1,2,3是当前在凸包的栈中的点,4号节点是需要判断的点
那么,我们需要从栈中拿最上方的两个点(2和3节点)
把他们连接起来,再把2和4连接起来(怎么连接?我是不会说直接用向量的坐标表示就可以了)
计算一下两个向量的叉积。。
哈,叉积。。。
解释一下吧。。
假设2到3的向量是a(x1,y1)
2到4的向量是b(x2,y2)
那么,计算一下它们的叉积,也就是x1y2-x2y1
换种方法来表示就是。
|a|·|b|·sin<a,b>
(所以说叉积也可以用来求出三角形的面积~这个以后还会用到的)
如果,这两个向量的叉积≥0 证明这两个向量平行或者夹角是个锐角
也就证明了3号节点此时一定不再凸包上(因为连接2和4之后3在凸包内侧了)
把3号节点弹出栈,继续重复上面的步骤即可。
感觉我说的有点小复杂诶。。。。
这个东东多画点图就会理解的
如果还是不太清楚,可以看一看代码。
struct Node
{
int x,y;
}p[MAX],S[MAX];//p储存节点的位置,S是凸包的栈
inline bool cmp(Node a,Node b)//比较函数,对点的极角进行排序
{
double A=atan2((a.y-p[1].y),(a.x-p[1].x));
double B=atan2((b.y-p[1].y),(b.x-p[1].x));
if(A!=B)return A<B;
else return a.x<b.x; //这里注意一下,如果极角相同,优先放x坐标更小的点
}
long long Cross(Node a,Node b,Node c)//计算叉积
{
return 1LL*(b.x-a.x)*(c.y-a.y)-1LL*(b.y-a.y)*(c.x-a.x);
}
void Get()//求出凸包
{
p[0]=(Node){INF,INF};int k;
for(int i=1;i<=n;++i)//找到最靠近左下的点
if(p[0].y>p[i].y||(p[0].y==p[i].y&&p[i].x<p[0].x))
{p[0]=p[i];k=i;}
swap(p[k],p[1]);
sort(&p[2],&p[n+1],cmp);//对于剩余点按照极角进行排序
S[0]=p[1],S[1]=p[2];top=1;//提前在栈中放入节点
for(int i=3;i<=n;)//枚举其他节点
{
if(top&&Cross(S[top-1],p[i],S[top])>=0)
top--;//如果当前栈顶不是凸包上的节点则弹出
else S[++top]=p[i++];//加入凸包的栈中
}
//底下这个玩意用来输出凸包上点的坐标
//for(int i=0;i<=top;++i)
// printf("(%d,%d)\n",S[i].x,S[i].y);
}
接下来找一道简单点的例题
HDU 1392
这道题目就是求出凸包然后计算周长,很简单的题目,去试试吧。。
凸包--Graham扫描法的更多相关文章
- [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法
今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...
- 【计算几何初步-凸包-Graham扫描法-极角序】【HDU1348】 WALL
Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- 凸包算法(Graham扫描法)详解
先说下基础知识,不然不好理解后面的东西 两向量的X乘p1(x1,y1),p2(x2,y2) p1Xp2如果小于零则说明 p1在p2的逆时针方向 如果大于零则说明 p1在p2的顺时针方向 struct ...
- 【BZOJ-1670】Building the Moat护城河的挖掘 Graham扫描法 + 凸包
1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 464 Solv ...
- 计算几何 : 凸包学习笔记 --- Graham 扫描法
凸包 (只针对二维平面内的凸包) 一.定义 简单的说,在一个二维平面内有n个点的集合S,现在要你选择一个点集C,C中的点构成一个凸多边形G,使得S集合的所有点要么在G内,要么在G上,并且保证这个凸多边 ...
- Graham 扫描法找凸包(convexHull)
凸包定义 通俗的话来解释凸包:给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点  Graham扫描法 由最底的一点 \(p_1\) 开始(如果有多个这样的点, ...
- 关于graham扫描法求凸包的小记
1.首先,凸包是啥: 若是在二维平面上,则一般的,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点. ───────────────────────────── ...
- Graham扫描法 --求凸包
前言: 首先,什么是凸包? 假设平面上有p0~p12共13个点,过某些点作一个多边形,使这个多边形能把所有点都“包”起来.当这个多边形是凸多边形的时候,我们就叫它“凸包”.如下图: 然后,什么是凸包 ...
- (模板)poj1113(graham扫描法求凸包)
题目链接:https://vjudge.net/problem/POJ-1113 题意:简化下题意即求凸包的周长+2×PI×r. 思路:用graham求凸包,模板是kuangbin的. AC code ...
随机推荐
- CometD的消息推送
CometD 框架 CometD 框架是基于 HTTP 的事件驱动通信解决方案.CometD 框架提供了一个 Java 服务器部件和一个 Java 客户端部件,还有一个基于 jQuery 和 Dojo ...
- [Python Study Notes] python面试题总结
python语法以及其他基础部分 可变与不可变类型: 浅拷贝与深拷贝的实现方式.区别:deepcopy如果你来设计,如何实现: __new__() 与 __init__()的区别: 你知道几种设计模式 ...
- PHP两个日期之间的所有日期
我想得到两个日期之间的所有日期, 例如:输入两个日期,把这两个日期之间的所有日期取出来 如果是:2005-02-01至2005-02-05(同为一个月) 则为:2005-02-01,2 ...
- checkbox/input文本框与文字对齐
3种方法都能实现checkbox文本框或radio文本框与文字对齐: <meta charset="utf-8"> <input style="vert ...
- [bzoj3875] [Ahoi2014]骑士游戏
3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 844 Solved: 440[Submit][Status ...
- 【Unity3D技术文档翻译】第1.0篇 AssetBundles
前言 "Unity圣典"是目前对官方文档翻译比较详细的,然而文档的最新更新日期是2013年,已经远远落后最新版本,参考意义有限.官方文档.脚本手册是学习Unity3D最直接有效的途 ...
- CentOS 挂载 cdrom, iso文件作为源
在生产系统环境中的机器都没有连接互联网,因此都是使用本地源. 首先,需要将cdrom, 或 iso文件挂载到本地目录. 1.挂载光驱: 将cdrom 放入光驱. $ mkdir /media/cdr ...
- gerrit+nginx+centos安装配置
安装环境 centos 6.8 gerrit-full-2.5.2.war 下载地址:https://gerrit-releases.storage.googleapis.com/gerrit-ful ...
- Angular @HostBinding()和@HostListener()用法
@HostBinding()和@HostListener()在自定义指令时非常有用.@HostBinding()可以为指令的宿主元素添加类.样式.属性等,而@HostListener()可以监听宿主元 ...
- Qt 网络模块如何使用?
1.网络模块介绍 类名 说明 中文 QAbstractNetworkCache The interface for cache implementations 缓存实现的接口 QNetworkCach ...