本文主要关注ShuffledRDD的Shuffle Read是如何从其他的node上读取数据的。

上文讲到了获取如何获取的策略都在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#splitLocalRemoteBlocks中。可以见注释。

    protected def splitLocalRemoteBlocks(): ArrayBuffer[FetchRequest] = {
// Make remote requests at most maxBytesInFlight / 5 in length; the reason to keep them
// smaller than maxBytesInFlight is to allow multiple, parallel fetches from up to 5
// nodes, rather than blocking on reading output from one node.
// 为了快速的得到数据,每次都会启动5个线程去最多5个node上取数据;
// 每次请求的数据不会超过spark.reducer.maxMbInFlight(默认值为48MB) / 5。
// 这样做的原因有几个:
// 1. 避免占用目标机器的过多带宽,在千兆网卡为主流的今天,带宽还是比较重要的。
// 如果一个连接将要占用48M的带宽,这个Network IO可能会成为瓶颈。
// 2. 请求数据可以平行化,这样请求数据的时间可以大大减少。请求数据的总时间就是那个请求最长的。
// 如果不是并行请求,那么总时间将是所有的请求时间之和。
// 而设置spark.reducer.maxMbInFlight,也是为了不要占用过多的内存
val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)
logInfo("maxBytesInFlight: " + maxBytesInFlight + ", targetRequestSize: " + targetRequestSize) // Split local and remote blocks. Remote blocks are further split into FetchRequests of size
// at most maxBytesInFlight in order to limit the amount of data in flight.
val remoteRequests = new ArrayBuffer[FetchRequest]
var totalBlocks = 0
for ((address, blockInfos) <- blocksByAddress) { // address实际上是executor_id
totalBlocks += blockInfos.size
if (address == blockManagerId) { //数据在本地,那么直接走local read
// Filter out zero-sized blocks
localBlocksToFetch ++= blockInfos.filter(_._2 != 0).map(_._1)
_numBlocksToFetch += localBlocksToFetch.size
} else {
val iterator = blockInfos.iterator
var curRequestSize = 0L
var curBlocks = new ArrayBuffer[(BlockId, Long)]
while (iterator.hasNext) {
// blockId 是org.apache.spark.storage.ShuffleBlockId,
// 格式:"shuffle_" + shuffleId + "_" + mapId + "_" + reduceId
val (blockId, size) = iterator.next()
// Skip empty blocks
if (size > 0) { //过滤掉为大小为0的文件
curBlocks += ((blockId, size))
remoteBlocksToFetch += blockId
_numBlocksToFetch += 1
curRequestSize += size
} else if (size < 0) {
throw new BlockException(blockId, "Negative block size " + size)
}
if (curRequestSize >= targetRequestSize) { // 避免一次请求的数据量过大
// Add this FetchRequest
remoteRequests += new FetchRequest(address, curBlocks)
curBlocks = new ArrayBuffer[(BlockId, Long)]
logDebug(s"Creating fetch request of $curRequestSize at $address")
curRequestSize = 0
}
}
// Add in the final request
if (!curBlocks.isEmpty) { // 将剩余的请求放到最后一个request中。
remoteRequests += new FetchRequest(address, curBlocks)
}
}
}
logInfo("Getting " + _numBlocksToFetch + " non-empty blocks out of " +
totalBlocks + " blocks")
remoteRequests
}

Spark技术内幕: Shuffle详解(二)的更多相关文章

  1. Spark技术内幕: Shuffle详解(一)

    通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用 ...

  2. Spark技术内幕: Shuffle详解(三)

    前两篇文章写了Shuffle Read的一些实现细节.但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的:本篇开始,将按照Job的执行顺序,来讲解Shuffle.即,结果数据(ShuffleMap ...

  3. [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等

    本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...

  4. Spark技术内幕:Stage划分及提交源码分析

    http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...

  5. 前端技术之_CSS详解第一天

    前端技术之_CSS详解第一天 一html部分 略.... 二.列表 列表有3种 2.1 无序列表 无序列表,用来表示一个列表的语义,并且每个项目和每个项目之间,是不分先后的. ul就是英语unorde ...

  6. Spark技术内幕: Task向Executor提交的源码解析

    在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...

  7. 前端技术之_CSS详解第三天

    前端技术之_CSS详解第三天 二.权重问题深入 2.1 同一个标签,携带了多个类名,有冲突: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ...

  8. 前端技术之_CSS详解第四天

    前端技术之_CSS详解第四天 一.第三天的小总结 盒模型box model,什么是盒子? 所有的标签都是盒子.无论是div.span.a都是盒子.图片.表单元素一律看做文本. 盒模型有哪些组成: wi ...

  9. 前端技术之_CSS详解第五天

    前端技术之_CSS详解第五天 一.行高和字号 1.1 行高 CSS中,所有的行,都有行高.盒模型的padding,绝对不是直接作用在文字上的,而是作用在“行”上的. <!DOCTYPE html ...

随机推荐

  1. 基于webpack的React项目搭建(二)

    前言 前面我们已经搭建了基础环境,现在将开发环境更完善一些. devtool 在开发的过程,我们会经常调试,so,为了方便我们在chrome中调试源代码,需要更改webpack.config.js,然 ...

  2. STL rope

    rope的部分简单操作 函数 功能 push_back(x) 在末尾添加x insert(pos,x) 在pos插入x erase(pos,x) 从pos开始删除x个 replace(pos,x) 从 ...

  3. weak_ptr解决shared_ptr环状引用所引起的内存泄漏[转]

    转载:http://blog.csdn.net/liuzhi1218/article/details/6993135 循环引用: 引用计数是一种便利的内存管理机制,但它有一个很大的缺点,那就是不能管理 ...

  4. ●BZOJ 2149 拆迁队

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2149 题解: 斜率优化DP,栈维护凸包,LIS,分治(我也不晓得是不是CDQ分治...) 一 ...

  5. poj 2653 线段与线段相交

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11884   Accepted: 4499 D ...

  6. 谈谈Python中的decorator装饰器,如何更优雅的重用代码

    众所周知,Python本身有很多优雅的语法,让你能用一行代码写出其他语言很多行代码才能做的事情,比如: 最常用的迭代(eg: for i in range(1,10)), 列表生成式(eg: [ x* ...

  7. centos7.2中文乱码解决办法

    centos7.2 中文乱码解决办法 1.查看安装中文包: 查看系统是否安装中文语言包 (列出所有可用的公共语言环境的名称,包含有zh_CN) # locale -a |grep "zh_C ...

  8. js 输入密码框遇到的问题

    上次公司项目需要用到密码输入框,如图所示: 首先设计是设置六个div,然后放置六个input. 动态方面然根据键盘onkey事件进行判断,当按键放松时使前一个input失去焦点,下一个input获取焦 ...

  9. 微信小程序开发 导入文件说没找到.json的问题

    这个真的坑爹 网上的答案也没几个靠谱 说白了就是找个空文件直接创建 然后复制粘贴 反应了这玩意ide不成熟 进去之后直接创了个quick start的源码 也就是我们看的这个网页建议我们下载的源码 老 ...

  10. 77. Combinations(medium, backtrack, 重要, 弄了1小时)

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...