Spark技术内幕: Shuffle详解(二)
本文主要关注ShuffledRDD的Shuffle Read是如何从其他的node上读取数据的。
上文讲到了获取如何获取的策略都在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#splitLocalRemoteBlocks中。可以见注释。
protected def splitLocalRemoteBlocks(): ArrayBuffer[FetchRequest] = {
// Make remote requests at most maxBytesInFlight / 5 in length; the reason to keep them
// smaller than maxBytesInFlight is to allow multiple, parallel fetches from up to 5
// nodes, rather than blocking on reading output from one node.
// 为了快速的得到数据,每次都会启动5个线程去最多5个node上取数据;
// 每次请求的数据不会超过spark.reducer.maxMbInFlight(默认值为48MB) / 5。
// 这样做的原因有几个:
// 1. 避免占用目标机器的过多带宽,在千兆网卡为主流的今天,带宽还是比较重要的。
// 如果一个连接将要占用48M的带宽,这个Network IO可能会成为瓶颈。
// 2. 请求数据可以平行化,这样请求数据的时间可以大大减少。请求数据的总时间就是那个请求最长的。
// 如果不是并行请求,那么总时间将是所有的请求时间之和。
// 而设置spark.reducer.maxMbInFlight,也是为了不要占用过多的内存
val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)
logInfo("maxBytesInFlight: " + maxBytesInFlight + ", targetRequestSize: " + targetRequestSize) // Split local and remote blocks. Remote blocks are further split into FetchRequests of size
// at most maxBytesInFlight in order to limit the amount of data in flight.
val remoteRequests = new ArrayBuffer[FetchRequest]
var totalBlocks = 0
for ((address, blockInfos) <- blocksByAddress) { // address实际上是executor_id
totalBlocks += blockInfos.size
if (address == blockManagerId) { //数据在本地,那么直接走local read
// Filter out zero-sized blocks
localBlocksToFetch ++= blockInfos.filter(_._2 != 0).map(_._1)
_numBlocksToFetch += localBlocksToFetch.size
} else {
val iterator = blockInfos.iterator
var curRequestSize = 0L
var curBlocks = new ArrayBuffer[(BlockId, Long)]
while (iterator.hasNext) {
// blockId 是org.apache.spark.storage.ShuffleBlockId,
// 格式:"shuffle_" + shuffleId + "_" + mapId + "_" + reduceId
val (blockId, size) = iterator.next()
// Skip empty blocks
if (size > 0) { //过滤掉为大小为0的文件
curBlocks += ((blockId, size))
remoteBlocksToFetch += blockId
_numBlocksToFetch += 1
curRequestSize += size
} else if (size < 0) {
throw new BlockException(blockId, "Negative block size " + size)
}
if (curRequestSize >= targetRequestSize) { // 避免一次请求的数据量过大
// Add this FetchRequest
remoteRequests += new FetchRequest(address, curBlocks)
curBlocks = new ArrayBuffer[(BlockId, Long)]
logDebug(s"Creating fetch request of $curRequestSize at $address")
curRequestSize = 0
}
}
// Add in the final request
if (!curBlocks.isEmpty) { // 将剩余的请求放到最后一个request中。
remoteRequests += new FetchRequest(address, curBlocks)
}
}
}
logInfo("Getting " + _numBlocksToFetch + " non-empty blocks out of " +
totalBlocks + " blocks")
remoteRequests
}
Spark技术内幕: Shuffle详解(二)的更多相关文章
- Spark技术内幕: Shuffle详解(一)
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用 ...
- Spark技术内幕: Shuffle详解(三)
前两篇文章写了Shuffle Read的一些实现细节.但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的:本篇开始,将按照Job的执行顺序,来讲解Shuffle.即,结果数据(ShuffleMap ...
- [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等
本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...
- Spark技术内幕:Stage划分及提交源码分析
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...
- 前端技术之_CSS详解第一天
前端技术之_CSS详解第一天 一html部分 略.... 二.列表 列表有3种 2.1 无序列表 无序列表,用来表示一个列表的语义,并且每个项目和每个项目之间,是不分先后的. ul就是英语unorde ...
- Spark技术内幕: Task向Executor提交的源码解析
在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...
- 前端技术之_CSS详解第三天
前端技术之_CSS详解第三天 二.权重问题深入 2.1 同一个标签,携带了多个类名,有冲突: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ...
- 前端技术之_CSS详解第四天
前端技术之_CSS详解第四天 一.第三天的小总结 盒模型box model,什么是盒子? 所有的标签都是盒子.无论是div.span.a都是盒子.图片.表单元素一律看做文本. 盒模型有哪些组成: wi ...
- 前端技术之_CSS详解第五天
前端技术之_CSS详解第五天 一.行高和字号 1.1 行高 CSS中,所有的行,都有行高.盒模型的padding,绝对不是直接作用在文字上的,而是作用在“行”上的. <!DOCTYPE html ...
随机推荐
- Redis数据类型--string
在Redis中支持丰富的数据类型的存储系统,包括:字符串(string),散列(hashes),列表(lists),集合(sets),有序集合(sorted sets),与范围查询,bitmaps,h ...
- ubuntu linux c学习笔记----共享内存(shmget,shmat,shmdt,shmctl)
shmget int shmget(key_t key, size_t size, int flag); key: 标识符的规则 size:共享存储段的字节数 flag:读写的权限 返回值:成功返回共 ...
- 第三次C语言作业
(一)改错题 计算f(x)的值:输入实数x,计算并输出下列分段函数f(x)的值,输出时保留1位小数. 输入输出样例1: Enterr x: 10.0 f(10.0) = 0.1 输入输出样例2: En ...
- glusterfs 4.0.1 rpc 分析笔记1
Jimmy的文档:Glusterfs的rpc模块分析 第一节.rpc服务器端实现原理及代码分析 第二节.rpc客户端实现原理及代码分析 第三节.rpc通信过程分析 经过阅读源码对比之前提及的文档,我个 ...
- js黑魔法
清空一个数组 一直以来,清空一个数组都是var i = [1,2,3]; i = [];,习惯成自然,被自己坑了. 举个例子 var i = [1,2,3]; var obj = {val: i}; ...
- Chrome的First Paint
前言 First paint 直译过来的意思就是浏览器第一次渲染(paint),在First paint之前是白屏,在这个时间点之后用户就能看到(部分)页面内容. 所以研究这个First Paint的 ...
- Vue2学习(2)
按键修饰符 还可以自定义按键修饰符别名,通过全局 config.keyCodes 对象设置: // 可以使用 `v-on:keyup.f1` Vue.config.keyCodes.f1 = 112 ...
- 用JavaScript按一定格式解析出URL 串中所有的参数
1.先看看location对象 2.其中的search属性就获取当前URL的查询部分(问号?之后的部分) 3.改造location.search 比如当前URL为:https://www.hao123 ...
- HashMap和ConcurrentHashMap实现原理及源码分析
HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...
- 561. Array Partition I
Given an array of 2n integers, your task is to group these integers into n pairs of integer, say \(( ...