Description

There is a youngster known for amateur propositions concerning several mathematical hard problems.

Nowadays, he is preparing a thought-provoking problem on a specific type of supercomputer which has ability to support calculations of integers between 00 and (2m−1)(2m−1) (inclusive).

As a young man born with ten fingers, he loves the powers of 1010 so much, which results in his eccentricity that he always ranges integers he would like to use from 11 to 10k10k (inclusive).

For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could.

Given the positive integer m, your task is to determine maximum possible integer k that is suitable for the specific supercomputer.

 

Input

The input contains multiple test cases. Each test case in one line contains only one positive integer mm, satisfying 1≤m≤1051≤m≤105.
 

Output

For each test case, output " Case #xx: yy" in one line (without quotes), where xx indicates the case number starting from 11 and yy denotes the answer of corresponding case.
 
Sample

Sample Input

Sample Output
Case #:
Case #:

题意:

  给出10^k ≥ 2^m -1,求k的最大整数

思路:

  令10^k = 2^m 两边取对数,得 k = m*log10(2)的整数部分。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<math.h>
using namespace std;
int main()
{
int flag = ,n;
while(scanf("%d",&n)!=EOF)
{
int ans= (n*log10());
printf("Case #%d: %d\n",flag++,ans);
}
return ;
}

HDU 6033 Add More Zero (数学)的更多相关文章

  1. HDU 6033 - Add More Zero | 2017 Multi-University Training Contest 1

    /* HDU 6033 - Add More Zero [ 简单公式 ] | 2017 Multi-University Training Contest 1 题意: 问 2^n-1 有几位 分析: ...

  2. 2017 Multi-University Training Contest - Team 1 1001&&HDU 6033 Add More Zero【签到题,数学,水】

    Add More Zero Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  3. 2017ACM暑期多校联合训练 - Team 1 1001 HDU 6033 Add More Zero (数学)

    题目链接 Problem Description There is a youngster known for amateur propositions concerning several math ...

  4. 2017"百度之星"程序设计大赛 - 复赛1003&&HDU 6146 Pokémon GO【数学,递推,dp】

    Pokémon GO Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. HDU 5810 Balls and Boxes 数学

    Balls and Boxes 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5810 Description Mr. Chopsticks is i ...

  6. hdu 1577 WisKey的眼神 (数学几何)

    WisKey的眼神 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  7. hdu - 3959 Board Game Dice(数学)

    这道题比赛中没做出来,赛后搞了好久才出来的,严重暴露的我薄弱的数学功底, 这道题要推公式的,,,有类似于1*a+2*a^2+3*a^3+...+n*a^n的数列求和. 最后画了一张纸才把最后的结果推出 ...

  8. HDU 5902 GCD is Funny 数学

    GCD is Funny 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5902 Description Alex has invented a ne ...

  9. hdu 4946 Just a Joke(数学+物理)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4969 Just a Joke Time Limit: 2000/1000 MS (Java/Others) ...

随机推荐

  1. linux使用crontab实现PHP执行定时任务

    首先说说cron,它是一个linux下的定时执行工具.根用户以外的用户可以使用 crontab 工具来配置 cron 任务. 所有用户定义的 crontab 都被保存在/var/spool/cron ...

  2. 点击率模型AUC

    一 背景       首先举个例子:                          正样本(90)                       负样本(10)         模型1预测      ...

  3. 再谈AbstractQueuedSynchronizer:共享模式与基于Condition的等待/通知机制实现

    共享模式acquire实现流程 上文我们讲解了AbstractQueuedSynchronizer独占模式的acquire实现流程,本文趁热打铁继续看一下AbstractQueuedSynchroni ...

  4. HTML Element 与 Node 的区别

    Element 与 Node 的区别 <html> <head><title>Element & Node</title></head&g ...

  5. Spring (3.2.4) 常用jar 包解析

    Spring (3.2.4) 常用jar 包解析 基本jar包 spring-aop-3.2.4.RELEASE.jar spring-aspects-3.2.4.RELEASE.jar spring ...

  6. 一个简单的python选课系统

    下面介绍一下自己写的python程序,主要是的知识点为sys.os.json.pickle的模块应用,python程序包的的使用,以及关于类的使用. 下面是我的程序目录: bin是存放一些执行文件co ...

  7. 把sql输出成。sql文件

    作者原创,转载注明出处: 代码: package importfile; import java.io.*; import java.io.PrintWriter; import java.sql.C ...

  8. Oracle 11g RAC 自动应用PSU补丁简明版

    环境:Oracle RAC(GI 11.2.0.4 + DB 11.2.0.4) 本文应用补丁信息: Patch 23615403 - Combo of OJVM Component 11.2.0.4 ...

  9. 基于 svn 服务器及 cocoapods-repo-svn 插件进行组件化私有库的创建

    一.准备 组件化 随着业务需求的增长,在单工程 MVC 模式下,app 代码逐渐变得庞大,面对的高耦合的代码和复杂的功能模块,我们或许就需要进行重构了,以组件化的形式,将需要的组件以 pod 私有库的 ...

  10. 51Nod 1509加长棒

    传送门 http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1509 现在有三根木棒,他们的长度分别是a,b,c厘米.你可以对他 ...