【题目描述】

一个无向连通图,顶点从1编号到N,边从1编号到M。 
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

【输入格式】

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

【输出格式】

仅包含一个实数,表示最小的期望值,保留3位小数。

【样例输入】

  3  3
2 3
1 2
1 3

【样例输出】

3.333

【提示】

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。

【题解】

对答案贡献大的边编号越小越好,贡献小的边编号自然需要较大,这样想明显需要求出各边经过次数的期望。

首先删去终点的出边,对于每一条边,设其两个节点为u和v:可能从u走到v,也可能从v走到u,从u走到v的期望次数等于经过点u的次数/u的度数,问题转化成求每个点的期望经过次数。

和臭气弹类似地,对于起点,一开始经过一次,也可能从其他点走过来。这是n个变量n个方程的方程组,高斯消元解方程组。
                       f[1]=1+sigma(f[j]/degree(j),j和1有边)
                   f[i]=sigma(f[j]/degree(j),j和i有边,i>=2)

求出各边期望的经过次数之后从大到小sort一下,把它的编号作为边权,计算结果即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int sj=;
const double je=1e-;
int n,m,a1,a2,e,h[sj],q[sj*sj],z[sj*sj];
double cd[sj],a[sj][sj],c[sj],jg,xx[sj*sj];
struct B
{
int ne,v;
}b[sj*sj*];
void add(int x,int y)
{
b[e].v=y;
b[e].ne=h[x];
h[x]=e++;
cd[x]++;
}
void init()
{
scanf("%d%d",&n,&m);
memset(h,-,sizeof(h));
for(int i=;i<=m;i++)
{
scanf("%d%d",&a1,&a2);
q[i]=a1;
z[i]=a2;
if(a1!=n) add(a1,a2);
if(a2!=n) add(a2,a1);
}
for(int i=;i<n;i++)
{
a[i][i]=;
for(int j=h[i];j!=-;j=b[j].ne)
a[b[j].v][i]-=/cd[i];
}
c[]=;
a[n][n]=;
}
void jh(double &x,double &y)
{
double temp=y;
y=x;
x=temp;
}
void gs()
{
int zd;
double temp;
for(int i=;i<=n;i++)
{
zd=i;
temp=fabs(a[i][i]);
for(int j=i+;j<=n;j++)
if(temp<fabs(a[j][i]))
{
zd=j;
temp=fabs(a[j][i]);
}
if(zd!=i)
{
for(int j=;j<=n;j++)
jh(a[i][j],a[zd][j]);
jh(c[i],c[zd]);
}
if(fabs(a[i][i])<je) continue;
temp=a[i][i];
for(int j=;j<=n;j++)
a[i][j]/=temp;
c[i]/=temp;
for(int j=;j<=n;j++)
if(i!=j)
{
temp=a[j][i];
for(int k=;k<=n;k++)
a[j][k]-=a[i][k]*temp;
c[j]-=c[i]*temp;
}
}
}
int main()
{
//freopen("t.txt","r",stdin);
freopen("walk.in","r",stdin);
freopen("walk.out","w",stdout);
init();
gs();
for(int i=;i<=m;i++)
{
if(cd[q[i]])
xx[i]+=c[q[i]]/cd[q[i]];
if(cd[z[i]])
xx[i]+=c[z[i]]/cd[z[i]];
}
sort(xx+,xx+m+,greater<double>());
for(int i=;i<=m;i++)
jg+=xx[i]*i;
printf("%.3lf",jg);
//while(1);
return ;
}

游走[HNOI2013]的更多相关文章

  1. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  2. [补档][Hnoi2013]游走

    [Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...

  3. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  4. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  5. P3232 [HNOI2013]游走 解题报告

    P3232 [HNOI2013]游走 题目描述 一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\). 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概 ...

  6. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  7. BZOJ3141 Hnoi2013 游走 【概率DP】【高斯消元】*

    BZOJ3141 Hnoi2013 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点 ...

  8. 「HNOI2013」游走

    「HNOI2013」游走 题目描述 一个无向连通图,顶点从 \(1\) 编号到 \(N\) ,边从 \(1\) 编号到 \(M\) .小 \(Z\) 在该图上进行随机游走,初始时小 \(Z\) 在 \ ...

  9. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

随机推荐

  1. JS中创建自定义对象的方法

    1.直接给对象扩充属性和方法: 2.对象字面量: 3.工厂方式: 4.构造函数方式: 5.原型方式: 6.混合方式. <script> // 1.直接给对象扩充属性和方法; var cat ...

  2. Example004自动关闭的广告窗口

    <!-- 实例004自动关闭的广告窗口--> <!-- 3秒后关闭 --> <body onload="window.setTimeout('window.cl ...

  3. keyStore很重要,千万不能丢失

    打包apk的时候需要对apk文件进行签名,如果想要自己给apk签名那么就要自己创建keystore.1.签名的意义为了保证每个应用程序开发商合法ID,防止部分开放商可能通过使用相同的Package N ...

  4. JS综合练习

    练习一.任意数求和(最多输入十位数),输入999终止 运行代码 <!DOCTYPE html><html> <head> <meta charset=&quo ...

  5. Js作用域&作用域链

    js构建类 一 构建类的原则 构造函数 等于 原型的constructor //构造函数 function Hero(name,skill){ this.name = name; this.skill ...

  6. 关于Latex中插入Visio图片文字不显示的问题

    经过探索,将Visio保存为pdf格式是最完美的解决方式,因为pdf文件保存了所有格式和字体信息. Visio输出pdf时要使其符合PDF/A标准.如果包含Visio的多余信息,就会在一些低版本Lat ...

  7. Vijos 1981 跳石头 二分

    描述 一年一度的"跳石头"比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块岩 ...

  8. Hibernate使用注解进行ORM映射实例

    在上一篇博客中,我们通过xml配置文件进行实体类和表的映射,但是近两年来有更多的项目对一些比较稳定的实体类使用了注解进行ORM映射,这样使得编程更加简洁.简单.其实使用注解进行ORM映射和使用xml进 ...

  9. 【ALB技术笔记】基于多线程方式的串行通信接口数据接收案例

    基于多线程方式的串行通信接口数据接收案例 广东职业技术技术学院  欧浩源 1.案例背景 在本博客的<[CC2530入门教程-06]CC2530的ADC工作原理与应用>中实现了电压数据采集的 ...

  10. iOS动画学习-CALayer

    iOS中有很多方法可以实现动画,我们可以用CAKeyframeAnimation, CABasicAnimation,CASpringAnimation(iOS9.0中添加的,实现弹簧的效果),也可以 ...