MySQL的JOIN(四):JOIN优化实践之快速匹配
这篇博文讲述如何优化扫描速度。我们通过MySQL的JOIN(二):JOIN原理得知了两张表的JOIN操作就是不断从驱动表中取出记录,然后查找出被驱动表中与之匹配的记录并连接。这个过程的实质就是查询操作,想要优化查询操作,建索引是最常用的方式。那索引怎么建呢?我们来讨论下,首先插入测试数据。
CREATE TABLE t1 (
id INT PRIMARY KEY AUTO_INCREMENT,
type INT
);
SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 110000 |
+----------+
CREATE TABLE t2 (
id INT PRIMARY KEY AUTO_INCREMENT,
type INT
);
SELECT COUNT(*) FROM t2;
+----------+
| COUNT(*) |
+----------+
| 100 |
+----------+
左连接
左连接中,左表是驱动表,右表是被驱动表。想要快速查找被驱动表中匹配的记录,所以我们可以在右表建索引,从而提高连接性能。
-- 首先两个表都没建索引
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t1 | ALL | NULL | 110428 | NULL |
| 1 | t2 | ALL | NULL | 100 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+
-- 尝试在左表建立索引,改进不大
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+-------+----------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+-------+----------+--------+----------------------------------------------------+
| 1 | t1 | index | idx_type | 110428 | Using index |
| 1 | t2 | ALL | NULL | 100 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+-------+----------+--------+----------------------------------------------------+ -- 尝试在右表建立索引,效果拔群,Using index!!!
DROP INDEX idx_type ON t1;
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+----------+--------+-------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+------+---------------+----------+--------+-------------+
| 1 | t1 | ALL | NULL | NULL | 110428 | NULL |
| 1 | t2 | ref | idx_type | idx_type | 1 | Using index |
+----+-------+------+---------------+----------+--------+-------------+
右连接
右连接中,右表是驱动表,左表是被驱动表,想要快速查找被驱动表中匹配的记录,所以我们可以在左表建索引,从而提高连接性能。
DROP INDEX idx_type ON t2;
-- 两个表都没有索引
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t2 | ALL | NULL | 100 | NULL |
| 1 | t1 | ALL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+ -- 在右边建立索引,改进不大
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+
| 1 | t2 | index | NULL | idx_type | 100 | Using index |
| 1 | t1 | ALL | NULL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+ -- 尝试在左边建立索引,效果拔群!
DROP INDEX idx_type ON t2;
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+--------------+------+-------------+
| id | table | type | possible_keys | ref | rows | Extra |
+----+-------+------+---------------+--------------+------+-------------+
| 1 | t2 | ALL | NULL | NULL | 100 | NULL |
| 1 | t1 | ref | idx_type | test.t2.type | 5 | Using index |
+----+-------+------+---------------+--------------+------+-------------+
内连接
我们知道,MySQL Optimizer会对内连接做优化,不管谁内连接谁,都是用小表驱动大表,所以如果要优化内连接,可以在大表上建立索引,以提高连接性能。
另外注意一点,在小表上建立索引时,MySQL Optimizer会认为用大表驱动小表效率更快,转而用大表驱动小表。
对内连接小表驱动大表的优化策略不清楚的话,可以看MySQL的JOIN(三):JOIN优化实践之内循环的次数
DROP INDEX idx_type ON t1;
-- 两个表都没有索引,t2驱动t1
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t2 | ALL | NULL | 100 | NULL |
| 1 | t1 | ALL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+
-- 在t2表上建立索引,MySQL的Optimizer发现后,用大表驱动了小表
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+----------+--------+-------------+
| id | table | type | key | rows | Extra |
+----+-------+------+----------+--------+-------------+
| 1 | t1 | ALL | NULL | 110428 | Using where |
| 1 | t2 | ref | idx_type | 1 | Using index |
+----+-------+------+----------+--------+-------------+ -- 在t1表上建立索引,再加上t1是大表,符合“小表驱动大表”的原则,性能比上面的语句要好
DROP INDEX idx_type ON t2;
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+----------+------+-------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+------+---------------+----------+------+-------------+
| 1 | t2 | ALL | NULL | NULL | 100 | Using where |
| 1 | t1 | ref | idx_type | idx_type | 5 | Using index |
+----+-------+------+---------------+----------+------+-------------+
三表连接
上面都是两表连接,三表连接也是一样的,找出驱动表和被驱动表,在被驱动表上建立索引,即可提高连接性能。
总结
想要从快速匹配的角度优化JOIN,首先就是找出谁是驱动表,谁是被驱动表,然后在被驱动表上建立索引即可。
MySQL的JOIN(四):JOIN优化实践之快速匹配的更多相关文章
- MYSQL join 优化 --JOIN优化实践之快速匹配
MySQL的JOIN(四):JOIN优化实践之快速匹配 优化原则:小表驱动大表,被驱动表建立索引有效,驱动表建立索引基本无效果.A left join B :A是驱动表,B是被驱动表:A right ...
- Mysql慢查询定位和优化实践分享
调优目标:提高io的利用率,减少无谓的io能力浪费. 1.打开慢查询日志定位慢sql: my.cnf: slow_query_log slow_query_log_file=mysql.slow lo ...
- MySQL 上亿大表优化实践
目录 背景 分析 select xxx_record语句 delete xxx_record语句 测试 实施 索引优化后 delete大表优化为小批量删除 总结 背景 XX实例(一主一从)xxx告警中 ...
- MySQL的JOIN(五):JOIN优化实践之排序
这篇博文讲述如何优化JOIN查询带有排序的情况.大致分为对连接属性排序和对非连接属性排序两种情况.插入测试数据. CREATE TABLE t1 ( id INT PRIMARY KEY AUTO_I ...
- MySQL的JOIN(三):JOIN优化实践之内循环的次数
这篇博文讲述如何优化内循环的次数.内循环的次数受驱动表的记录数所影响,驱动表记录数越多,内循环就越多,连接效率就越低下,所以尽量用小表驱动大表.先插入测试数据. CREATE TABLE t1 ( i ...
- MySQL学习(四)Join 等开发常用的操作 --- 2019年2月
1.查数据太多不会把内存用光 InnoDB 的数据是保存在主键索引上,然后索引树分割保存在数据页上,数据页存在内存中/磁盘.change buffer 就是先把修改操作记录,然后读数据的时候,内存没有 ...
- Mysql中Join用法及优化
Join的几种类型 笛卡尔积(交叉连接) 如果A表有n条记录,B表有m条记录,笛卡尔积产生的结果就会产生n*m条记录.在MySQL中可以为CROSS JOIN或者省略CROSS即JOIN,或者直接用f ...
- Mysql查询优化器之关于JOIN的优化
连接查询应该是比较常用的查询方式,连接查询大致分为:内连接.外连接(左连接和右连接).自然连接 下图展示了 LEFT JOIN.RIGHT JOIN.INNER JOIN.OUTER JOIN 相关的 ...
- 一个Web报表项目的性能分析和优化实践(四):MySQL建立索引,唯一索引和组合索引
先大致介绍下项目的数据库信息. 数据库A:主要存放的通用的表,如User.Project.Report等. 数据库B.C.D:一个项目对应一个数据库,而且这几个项目的表是完全一样的. 数据库表的特点 ...
随机推荐
- Hardcoded string XXX,&…
eclipse布局文件警告:Hardcoded string XXX, should use @string resource
- POJ 2524 Ubiquitous Religions 解题报告
Ubiquitous Religions Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34122 Accepted: ...
- web项目中图标的前端处理方案
工程中用到图标是常事,那这些图标我们前端一般是怎么解决的呢?这几种方案有什么优缺点呢? 第一种: SVG Sprite SVG sprite其实就是svg的集合.SVG即可缩放矢量图形 (Scalab ...
- Presto0.157版本单节点部署教程
因为Presto版本的更新速度较快,所以最好按照对应版本的教程进行部署,博主之前看错了版本号,拿0.100版本的教程来部署0.157版本,结果导致部署失败. 官网:https://prestodb.i ...
- Apache Kafka系列(三) Java API使用
Apache Kafka系列(一) 起步 Apache Kafka系列(二) 命令行工具(CLI) Apache Kafka系列(三) Java API使用 摘要: Apache Kafka Java ...
- JUnit4在Eclipse中的使用
测试是项目开发中很重要的一环.实际上,建议的项目前期编写过程是:构思-> 编写单元测试代码-> 编写接口->编写实现类-> 测试实现类->编写主类....JUnit是一个 ...
- python学习===如何理解python中的return
首先要了解,函数是什么?书上可能会说函数是完成功能的模块之类的话.其实说白了,函数就是个你招来的工人.你给他一些材料,告诉他怎么用这些材料拼装,然后他负责把拼装好的成品交给你.材料就是函数的参数,成品 ...
- python实战===输入密码以******的形式在cmd中展示
#设置密码输入,显示为****** import msvcrt,sys def pwd_input(): chars = [] while True: try: newChar = msvcrt.ge ...
- Python集合(set)类型的操作
python的set和其他语言类似, 是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交), difference(差)和 ...
- 使用MySQL-Proxy读写分离时的注意事项
在动手操作前最好先安装好MySQL-Proxy,并配置好MySQL主从服务器.补充:新版MySQL已经内建支持 延迟问题 读写分离不能回避的问题之一就是延迟,可以考虑Google提供的SemiSync ...