MySQL的JOIN(四):JOIN优化实践之快速匹配
这篇博文讲述如何优化扫描速度。我们通过MySQL的JOIN(二):JOIN原理得知了两张表的JOIN操作就是不断从驱动表中取出记录,然后查找出被驱动表中与之匹配的记录并连接。这个过程的实质就是查询操作,想要优化查询操作,建索引是最常用的方式。那索引怎么建呢?我们来讨论下,首先插入测试数据。
CREATE TABLE t1 (
id INT PRIMARY KEY AUTO_INCREMENT,
type INT
);
SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 110000 |
+----------+
CREATE TABLE t2 (
id INT PRIMARY KEY AUTO_INCREMENT,
type INT
);
SELECT COUNT(*) FROM t2;
+----------+
| COUNT(*) |
+----------+
| 100 |
+----------+
左连接
左连接中,左表是驱动表,右表是被驱动表。想要快速查找被驱动表中匹配的记录,所以我们可以在右表建索引,从而提高连接性能。
-- 首先两个表都没建索引
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t1 | ALL | NULL | 110428 | NULL |
| 1 | t2 | ALL | NULL | 100 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+
-- 尝试在左表建立索引,改进不大
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+-------+----------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+-------+----------+--------+----------------------------------------------------+
| 1 | t1 | index | idx_type | 110428 | Using index |
| 1 | t2 | ALL | NULL | 100 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+-------+----------+--------+----------------------------------------------------+ -- 尝试在右表建立索引,效果拔群,Using index!!!
DROP INDEX idx_type ON t1;
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+----------+--------+-------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+------+---------------+----------+--------+-------------+
| 1 | t1 | ALL | NULL | NULL | 110428 | NULL |
| 1 | t2 | ref | idx_type | idx_type | 1 | Using index |
+----+-------+------+---------------+----------+--------+-------------+
右连接
右连接中,右表是驱动表,左表是被驱动表,想要快速查找被驱动表中匹配的记录,所以我们可以在左表建索引,从而提高连接性能。
DROP INDEX idx_type ON t2;
-- 两个表都没有索引
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t2 | ALL | NULL | 100 | NULL |
| 1 | t1 | ALL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+ -- 在右边建立索引,改进不大
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+
| 1 | t2 | index | NULL | idx_type | 100 | Using index |
| 1 | t1 | ALL | NULL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+ -- 尝试在左边建立索引,效果拔群!
DROP INDEX idx_type ON t2;
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+--------------+------+-------------+
| id | table | type | possible_keys | ref | rows | Extra |
+----+-------+------+---------------+--------------+------+-------------+
| 1 | t2 | ALL | NULL | NULL | 100 | NULL |
| 1 | t1 | ref | idx_type | test.t2.type | 5 | Using index |
+----+-------+------+---------------+--------------+------+-------------+
内连接
我们知道,MySQL Optimizer会对内连接做优化,不管谁内连接谁,都是用小表驱动大表,所以如果要优化内连接,可以在大表上建立索引,以提高连接性能。
另外注意一点,在小表上建立索引时,MySQL Optimizer会认为用大表驱动小表效率更快,转而用大表驱动小表。
对内连接小表驱动大表的优化策略不清楚的话,可以看MySQL的JOIN(三):JOIN优化实践之内循环的次数
DROP INDEX idx_type ON t1;
-- 两个表都没有索引,t2驱动t1
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t2 | ALL | NULL | 100 | NULL |
| 1 | t1 | ALL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+
-- 在t2表上建立索引,MySQL的Optimizer发现后,用大表驱动了小表
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+----------+--------+-------------+
| id | table | type | key | rows | Extra |
+----+-------+------+----------+--------+-------------+
| 1 | t1 | ALL | NULL | 110428 | Using where |
| 1 | t2 | ref | idx_type | 1 | Using index |
+----+-------+------+----------+--------+-------------+ -- 在t1表上建立索引,再加上t1是大表,符合“小表驱动大表”的原则,性能比上面的语句要好
DROP INDEX idx_type ON t2;
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+----------+------+-------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+------+---------------+----------+------+-------------+
| 1 | t2 | ALL | NULL | NULL | 100 | Using where |
| 1 | t1 | ref | idx_type | idx_type | 5 | Using index |
+----+-------+------+---------------+----------+------+-------------+
三表连接
上面都是两表连接,三表连接也是一样的,找出驱动表和被驱动表,在被驱动表上建立索引,即可提高连接性能。
总结
想要从快速匹配的角度优化JOIN,首先就是找出谁是驱动表,谁是被驱动表,然后在被驱动表上建立索引即可。
MySQL的JOIN(四):JOIN优化实践之快速匹配的更多相关文章
- MYSQL join 优化 --JOIN优化实践之快速匹配
MySQL的JOIN(四):JOIN优化实践之快速匹配 优化原则:小表驱动大表,被驱动表建立索引有效,驱动表建立索引基本无效果.A left join B :A是驱动表,B是被驱动表:A right ...
- Mysql慢查询定位和优化实践分享
调优目标:提高io的利用率,减少无谓的io能力浪费. 1.打开慢查询日志定位慢sql: my.cnf: slow_query_log slow_query_log_file=mysql.slow lo ...
- MySQL 上亿大表优化实践
目录 背景 分析 select xxx_record语句 delete xxx_record语句 测试 实施 索引优化后 delete大表优化为小批量删除 总结 背景 XX实例(一主一从)xxx告警中 ...
- MySQL的JOIN(五):JOIN优化实践之排序
这篇博文讲述如何优化JOIN查询带有排序的情况.大致分为对连接属性排序和对非连接属性排序两种情况.插入测试数据. CREATE TABLE t1 ( id INT PRIMARY KEY AUTO_I ...
- MySQL的JOIN(三):JOIN优化实践之内循环的次数
这篇博文讲述如何优化内循环的次数.内循环的次数受驱动表的记录数所影响,驱动表记录数越多,内循环就越多,连接效率就越低下,所以尽量用小表驱动大表.先插入测试数据. CREATE TABLE t1 ( i ...
- MySQL学习(四)Join 等开发常用的操作 --- 2019年2月
1.查数据太多不会把内存用光 InnoDB 的数据是保存在主键索引上,然后索引树分割保存在数据页上,数据页存在内存中/磁盘.change buffer 就是先把修改操作记录,然后读数据的时候,内存没有 ...
- Mysql中Join用法及优化
Join的几种类型 笛卡尔积(交叉连接) 如果A表有n条记录,B表有m条记录,笛卡尔积产生的结果就会产生n*m条记录.在MySQL中可以为CROSS JOIN或者省略CROSS即JOIN,或者直接用f ...
- Mysql查询优化器之关于JOIN的优化
连接查询应该是比较常用的查询方式,连接查询大致分为:内连接.外连接(左连接和右连接).自然连接 下图展示了 LEFT JOIN.RIGHT JOIN.INNER JOIN.OUTER JOIN 相关的 ...
- 一个Web报表项目的性能分析和优化实践(四):MySQL建立索引,唯一索引和组合索引
先大致介绍下项目的数据库信息. 数据库A:主要存放的通用的表,如User.Project.Report等. 数据库B.C.D:一个项目对应一个数据库,而且这几个项目的表是完全一样的. 数据库表的特点 ...
随机推荐
- cacti监控部署与配置
cacti是一套基于PHP,mysql,SNMP及RRDTool开发的网络流量测试图形分析工具 cacti是通过snmpget来获取数据,使用RRDtool绘画图形 ,而且完全可以不需要了解RRDto ...
- java类的继承,多态,抽象类与接口
知识点梳理: 1,怎样定义自己的类. MyStarFrame,MyStarPanel 类中定义: (1)属性(数据),变量. (2)方法(函数),行为. (3)构造方法(特征,作用,何时被调用 ...
- 弹性布局Flex的基本语法
一.Flex的简介 Flex 是 Flexible Box 的缩写,意为"弹性布局",用来为盒状模型提供最大的灵活性.用六个字概括弹性布局就是简单.方便.快速. flex( fle ...
- 【CPP】数据和C
%f是浮点型的占位符,%f.2表示显示到小数点后两位,.2称为修饰词 变量可以在程序执行过程中变化和指定,而常量不可以. [数据类型关键字]int long short unsigned char ...
- jQuery.Gantt
使用jQuery.Gantt过程中,遇到的问题!
- CentOS 7 服务器配置--安装Redis
#下载Redis wget -r -np -nd http://download.redis.io/releases/redis-3.2.8.tar.gz #解压文件 tar zxvf redis-3 ...
- vue小组件练习之文字居中对齐组件
时隔多月,继续学习Vue,这次是一个组件的制作过程 先让我们来看一下组件的预期效果 上图为公司自营的一个微信商城的某一部分截图,可以看到红框内部分的文字多行与单行是居中对齐的,我们现在要做的就是使用V ...
- Node.js之使用Buffer类处理二进制数据
Node.js之使用Buffer类处理二进制数据 Buffer类可以在处理TCP流或文件流时处理二进制数据,该类用来创建一个专门存放二进制数据的缓存区. 1. 创建Buffer对象 1.1 直接创建: ...
- JAVA在win10上的安装环境配置
[TOC] 第一步: 打开右击电脑选择属性 第二步: 选择高级系统设置 第三部: 选择环境变量 第四部: 选择在系统变量中新建:JAVA_HOME 属性值为你的java的jdk的位置比如我的:E:\J ...
- fiddler mock ==> AutoResponder
背景 做过测试的同学,肯定都听过fiddler的大名,抓包工具,app抓包 下载传送门(https://www.telerik.com/download/fiddler) 抓包使用这里就不复述了,这次 ...