初识Avro
Avro是Hadoop生态圈的一部分,由Hadoop的创始人Doug Cutting牵头开发,当前最新版本1.8.2。Avro是一个数据序列化系统,设计用于支持大批量数据交换的应用。它的主要特点有:
- Rich data structures.
- A compact, fast, binary data format.
- A container file, to store persistent data.
- Remote procedure call (RPC).
- Simple integration with dynamic languages. Code generation is not required to read or write data files nor to use or implement RPC protocols. Code generation as an optional optimization, only worth implementing for statically typed languages.
本文分享的主要是用Avro1.8.2版本,下载地址为https://mirrors.tuna.tsinghua.edu.cn/apache/avro/,语言为py3.
用Python3操作Avro:
1.创建avsc文件,如province.avsc:
{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "province", "type": "string"},
{"name": "abbreviation", "type": ["string", "null"]},
{"name": "capital_city", "type": ["string", "null"]},
{"name": "area", "type": ["float", "null"]}
]
}
其中type表示Avro的数据类型为recode类型,fields为字段说明,该avsc有四个字段:province字段,数据类型为string;abbreviation字段,数据类型为string或null;capital_city字段,数据类型为string或null;area字段,数据类型为float或null。
编写python3代码操作Avro,如下:
# -*- coding: utf- -*-
import avro.schema
from avro.datafile import DataFileReader, DataFileWriter
from avro.io import DatumReader, DatumWriter schema = avro.schema.Parse(open("/home/vagrant/province.avsc").read()) writer = DataFileWriter(open("/home/vagrant/provinces.avro", "wb"), DatumWriter(), schema)
writer.append({"province": "北京市", "abbreviation": "京", "capital_city":"北京", "area":1.68})
writer.append({"province": "上海市", "abbreviation": "沪", "capital_city":"上海", "area":0.63})
writer.append({"province": "天津市", "abbreviation": "津", "capital_city":"天津", "area":1.13})
writer.append({"province": "重庆市", "abbreviation": "渝", "capital_city":"重庆", "area":8.23})
writer.append({"province": "黑龙江省", "abbreviation": "黑", "capital_city":"哈尔滨", "area":45.48})
writer.append({"province": "吉林省", "abbreviation": "吉", "capital_city":"长春", "area":18.74})
writer.append({"province": "辽宁省", "abbreviation": "辽", "capital_city":"沈阳", "area":14.59})
writer.append({"province": "内蒙古", "abbreviation": "蒙", "capital_city":"呼和浩特", "area":118.3})
writer.append({"province": "河北省", "abbreviation": "冀", "capital_city":"石家庄", "area":18.77})
writer.append({"province": "新疆", "abbreviation": "新", "capital_city":"乌鲁木齐", "area":})
writer.append({"province": "甘肃省", "abbreviation": "甘", "capital_city":"兰州", "area":45.44})
writer.append({"province": "青海省", "abbreviation": "青", "capital_city":"西宁", "area":72.23})
writer.append({"province": "陕西省", "abbreviation": "陕", "capital_city":"西安", "area":20.56})
writer.append({"province": "宁夏", "abbreviation": "宁", "capital_city":"银川", "area":6.64})
writer.append({"province": "河南省", "abbreviation": "豫", "capital_city":"郑州", "area":16.7})
writer.append({"province": "山东省", "abbreviation": "鲁", "capital_city":"济南", "area":15.38})
writer.append({"province": "山西省", "abbreviation": "晋", "capital_city":"太原", "area":15.63})
writer.append({"province": "安徽省", "abbreviation": "皖", "capital_city":"合肥", "area":13.97})
writer.append({"province": "湖北省", "abbreviation": "鄂", "capital_city":"武汉", "area":18.59})
writer.append({"province": "湖南省", "abbreviation": "湘", "capital_city":"长沙", "area":21.18})
writer.append({"province": "江苏省", "abbreviation": "苏", "capital_city":"南京", "area":10.26})
writer.append({"province": "四川省", "abbreviation": "川", "capital_city":"成都", "area":48.14})
writer.append({"province": "贵州省", "abbreviation": "黔", "capital_city":"贵阳", "area":17.6})
writer.append({"province": "云南省", "abbreviation": "滇", "capital_city":"昆明", "area":38.33})
writer.append({"province": "广西省", "abbreviation": "桂", "capital_city":"南宁", "area":23.6})
writer.append({"province": "西藏", "abbreviation": "藏", "capital_city":"拉萨", "area":122.8})
writer.append({"province": "浙江省", "abbreviation": "浙", "capital_city":"杭州", "area":10.2})
writer.append({"province": "江西省", "abbreviation": "赣", "capital_city":"南昌", "area":16.7})
writer.append({"province": "广东省", "abbreviation": "粤", "capital_city":"广州", "area":})
writer.append({"province": "福建省", "abbreviation": "闽", "capital_city":"福州", "area":12.13})
writer.append({"province": "台湾省", "abbreviation": "台", "capital_city":"台北", "area":3.6})
writer.append({"province": "海南省", "abbreviation": "琼", "capital_city":"海口", "area":3.4})
writer.append({"province": "香港", "abbreviation": "港", "capital_city":"香港", "area":0.1101})
writer.append({"province": "澳门", "abbreviation": "澳", "capital_city":"澳门", "area":0.00254})
writer.close() reader = DataFileReader(open("/home/vagrant/provinces.avro", "rb"), DatumReader())
for user in reader:
print(user)
reader.close()
运行结果如下:

同时,会生成/home/vagrant/provinces.avro文件.
接下来我们在Hive中操作Avro文件。
首先需要将province.avsc和provinces.avro文件放在hdfs端:
hdfs dfs -put ~/province.avsc /user/hive/warehouse/
hdfs dfs -put ~/provinces.avro /user/hive/warehouse/
进入hive,创建provinces表,表的结构由province.avsc描述。
hive> CREATE TABLE provinces
> ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
> STORED AS INPUTFORMAT
> 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
> OUTPUTFORMAT
> 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
> TBLPROPERTIES (
> 'avro.schema.url'='hdfs:///user/hive/warehouse/province.avsc');
查看province表格:
hive> desc provinces;
OK
province string
abbreviation string
capital_city string
area float
从hdfs端导入数据:
load data inpath 'hdfs:///user/hive/warehouse/provinces.avro' overwrite into table provinces;
查看provinces.avro数据
hive> select * from provinces;
OK
北京市 京 北京 1.68
上海市 沪 上海 0.63
天津市 津 天津 1.13
重庆市 渝 重庆 8.23
黑龙江省 黑 哈尔滨 45.48
吉林省 吉 长春 18.74
辽宁省 辽 沈阳 14.59
内蒙古 蒙 呼和浩特 118.3
河北省 冀 石家庄 18.77
新疆 新 乌鲁木齐 166.0
甘肃省 甘 兰州 45.44
青海省 青 西宁 72.23
陕西省 陕 西安 20.56
宁夏 宁 银川 6.64
河南省 豫 郑州 16.7
山东省 鲁 济南 15.38
山西省 晋 太原 15.63
安徽省 皖 合肥 13.97
湖北省 鄂 武汉 18.59
湖南省 湘 长沙 21.18
江苏省 苏 南京 10.26
四川省 川 成都 48.14
贵州省 黔 贵阳 17.6
云南省 滇 昆明 38.33
广西省 桂 南宁 23.6
西藏 藏 拉萨 122.8
浙江省 浙 杭州 10.2
江西省 赣 南昌 16.7
广东省 粤 广州 18.0
福建省 闽 福州 12.13
台湾省 台 台北 3.6
海南省 琼 海口 3.4
香港 港 香港 0.1101
澳门 澳 澳门 0.00254
本次分享到此结束,欢迎大家批评和交流~~
参考网址:
- Avro Documentation:http://avro.apache.org/docs/current/
- Hive AvroSerDe:https://cwiki.apache.org/confluence/display/Hive/AvroSerDe
- avro总结:http://langyu.iteye.com/blog/708568
初识Avro的更多相关文章
- [Kafka][1][初识Kafka]
目录 第1章 初识Kafka 1.1 发布与订阅消息系统 1.1.1 如何开始 1.1.2 独立的队列系统 1.2 Kafka登场 1.2.1 消息和批次(Message and batch) 1.2 ...
- Android动画效果之初识Property Animation(属性动画)
前言: 前面两篇介绍了Android的Tween Animation(补间动画) Android动画效果之Tween Animation(补间动画).Frame Animation(逐帧动画)Andr ...
- 初识Hadoop
第一部分: 初识Hadoop 一. 谁说大象不能跳舞 业务数据越来越多,用关系型数据库来存储和处理数据越来越感觉吃力,一个查询或者一个导出,要执行很长 ...
- python学习笔记(基础四:模块初识、pyc和PyCodeObject是什么)
一.模块初识(一) 模块,也叫库.库有标准库第三方库. 注意事项:文件名不能和导入的模块名相同 1. sys模块 import sys print(sys.path) #打印环境变量 print(sy ...
- 初识IOS,Label控件的应用。
初识IOS,Label控件的应用. // // ViewController.m // Gua.test // // Created by 郭美男 on 16/5/31. // Copyright © ...
- UI篇(初识君面)
我们的APP要想吸引用户,就要把UI(脸蛋)搞漂亮一点.毕竟好的外貌是增进人际关系的第一步,我们程序员看到一个APP时,第一眼就是看这个软件的功能,不去关心界面是否漂亮,看到好的程序会说"我 ...
- Python导出Excel为Lua/Json/Xml实例教程(一):初识Python
Python导出Excel为Lua/Json/Xml实例教程(一):初识Python 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出 ...
- 初识SpringMvc
初识SpringMvc springMvc简介:SpringMVC也叫Spring Web mvc,属于表现层的框架.Spring MVC是Spring框架的一部分,是在Spring3.0后发布的 s ...
- 初识redis数据类型
初识redis数据类型 1.String(字符串) string是redis最基本的类型,一个key对应一个value. string类型是二进制安全的.意思是redis的string可以包含任何数据 ...
随机推荐
- Oracle函数sys_connect_by_path 详解
Oracle函数sys_connect_by_path 详解 语法:Oracle函数:sys_connect_by_path 主要用于树查询(层次查询) 以及 多列转行.其语法一般为: s ...
- 完美解决--用VS中的Git做代码管理器,与他人共享代码
1.创建代码仓库,这里说一下为什么要创建仓库,Git不能够作为源代码管理器,vs中自带的也只能够在本地进行管理,要和他们共享的话必须要有服务器端去存储代码,类似于SVN,它就有客户端和服务器端,这里推 ...
- 使用mysql5.7新特性(虚拟列)解决使用前通配符性能问题
众所周知,在mysql里的后通配符可以使用索引查找,前通配查询却无法使用到索引,即使是使用到了索引,也是使用了索引全扫描,效率依然不高,再MySQL5.7之前,一直都没有好的办法解决,但是到了MySQ ...
- Java compareTo() 方法
以金钱实交(realPay),和使用预存(usePurseFee)为例: if ( realPay.compareTo(usePurseFee) <=0) { XXXXXXX; }else { ...
- Vue-cli创建项目从单页面到多页面2-history模式
之前讲过怎样将vue-cli创建的项目改造成多页面(vue-cli创建项目从单页面到多页面),今天说一下怎样在多页面的前提下使用history模式. 如何使用history模式 因为vue默认的has ...
- Python 学习之路2
这是我在大学上机实验的作业 实验一 将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. 首先,先谈下我的设计思路: 设计思路: 1. 先需判断输入的number是不是一个数字( ...
- 学习MySQL(上)
具体实例 1.PHP 服务器组件 对于初学者建议使用集成的服务器组件,它已经包含了 PHP.Apache.Mysql 等服务,免去了开发人员将时间花费在繁琐的配置环境过程. Window 系统可以使用 ...
- THinkPHP的认识
四中路由方式:http://网址/index.php?m=分组&c=控制器&a=操作方法(但是这个不安全,不推荐使用)http://网址/index.php/分组/控制器/操作方法(默 ...
- Django 2.0 新特性 抢先看!
一.Python兼容性 Django 2.0支持Python3.4.3.5和3.6.Django官方强烈推荐每个系列的最新版本. 最重要的是Django 2.0不再支持Python2! Django ...
- Java编程学习技巧和方法总结
干货:必须要有反馈,不断调整,多读书,多些笔记. 解释:不练习你以为你能掌握?笑话,只有自己根据一个个小目标不断的敲,运行,给予你反馈,这样才会真的进步. 纸上谈Java,是永远停止在口. 关于笔 ...