Logistic Regression

一、内容概要

  • Classification and Representation

    • Classification
    • Hypothesis Representation
    • Decision Boundary
  • Logistic Regression Model
    • 损失函数(cost function)
    • 简化损失函数和梯度下降算法
    • Advanced Optimization(高级优化方法)
  • Solving the problem of Overfitting
    • 什么是过拟合?
    • 正则化损失函数(cost function)
    • 正则化线性回归(Regularized Linear Regression)
    • 正则化逻辑回归(Regularized Logistic Regression)

二、重点&难点

1. Classification and Representation

1) Hypothesis Representation

这里需要使用到sigmoid函数--g(z)

\[\begin{equation}
h_θ(x) = g(θ^Tx)
\end{equation}
\]

\[\begin{equation}
z = θ^Tx
\end{equation}
\]

\[\begin{equation}
g(z) = \frac{1}{1+e^{-z}}
\end{equation}
\]

2) Decision Boundary

决策边界:

\[h_θ(x) ≥ 0.5 → y=1 \]

\[h_θ(x) < 0.5 → y=0 \]

等价于

\[g(z) ≥ 0.5 → y=1 \]

\[g(z) < 0.5 → y=0 \]

等价于

\[z ≥0 → y=1 \]

\[z < 0 → y=0 \]

2. Logistic Regression Model

1) 逻辑回归的损失函数

这里之所以再次提到损失函数,是因为线性回归中的损失函数会使得输出呈现起伏,造成许多局部最优值,也就是说线性回归中的cost function在运用到逻辑回归时,将可能不再是凸函数。

逻辑回归的cost function如下:

\[J_θ = \frac{1}{m} \sum {Cost}( h_θ(x^{(i)}, y^{(i)} ) )\]

\[ {Cost}(h_θ(x), y) ) = - log(h_θ(x)) \quad \quad if \quad y=1\]

\[ {Cost}(h_θ(x), y) ) = - log(1 - h_θ(x)) \quad if \quad y=0\]

结合图来理解:

  • y=1



由上图可知,y=1,hθ(x)是预测值,

- 当其值为1时,表示预测正确,损失函数为0;

- 当其值为0时,表示错的一塌糊涂,需要大大的惩罚,所以损失函数趋近于∞。

  • y=0



上图同理

2) Simplified Cost Function and Gradient Descent

  • 损失函数

    cost function

\[Cost(h_θ(x), y) = -ylog(h_θ(x)) - (1-y)log(1-h_θ(x))\]

Jθ

\[J_θ=-\frac{1}{m} \sum Cost(h_θ(x), y) \]

\[\quad =-\frac{1}{m} \sum [-y^{i}log(h_θ(x^{(i)})) - (1-y^i)log(1-h_θ(x^{(i)}))] \]

  • 梯度函数

3)高级优化方法

如图左边显示的是优化方法,其中后三种是更加高级的算法,其优缺点由图邮编所示:

优点

  • 不需要手动选择α
  • 比梯度下降更快

缺点

  • 更加复杂

后面三种方法只需了解即可,老师建议如果你不是专业的数学专家,没必要自己使用这些方法。。。。。。当然了解一下原理也是好的。

3. Solving the problem of Overfitting

1) 过拟合

主要说一下过拟合的解决办法:

1)减少特征数量

  • 手动选择一些需要保留的特征
  • 使用模型选择算法(model selection algorithm)

    2)正则化
  • 保留所有特征,但是参数θ的数量级(大小)要减小
  • 当我们有很多特征,而且这些特征对于预测多多少少会由影响,此时正则化怎能起到很大的作用。

2) 正则化损失函数

图示右边很明显是过拟合,因此为了纠正加入了正则化项:1000·θ32,为了使得J(θ)最小化,所以算法会使得θ3趋近于0,θ4也趋近于0。

正则化损失函数表达式:

\[J(θ)=\frac{1}{2m} [\sum_{i=1}^m( h_θ(x^{(i)}) - y^{(i)})^2 + λ\sum_{j=1}^n θ_j^2]\]

\[min_θ [\frac{1}{2m} (\sum_{i=1}^m( h_θ(x^{(i)}) - y^{(i)})^2 + λ\sum_{j=1}^n θ_j^2)]\]

3) 正则化线性回归

  • 正则化梯度下降:

\[J(θ)=\frac{1}{2m} [\sum_{i=1}^m( h_θ(x^{(i)}) - y^{(i)})^2 + λ\sum_{j=1}^n θ_j^2]\]

\[\frac{∂J_θ}{∂θ_j} = \frac{1}{m} \sum_{i=1}^m( h_θ(x^{(i)} ) - y^{(i)} )x_j^{(i)} + \frac{λ}{m}θ_j \]

Repeat{

\[θ_0 := θ_0 - α\frac{1}{m}\sum_{i=1}{m}( h_θ(x^{(i)} ) - y^{(i)} )x_0^{(i)}\]

\[θ_j := θ_j - α[(\frac{1}{m}\sum_{i=1}{m}( h_θ(x^{(i)} ) - y^{(i)} )x_0^{(i)} ) + \frac{λ}{m}θ_j ] \quad j∈\{1,2,3……n\}\]

}

  • 正则化正规方程



前面提到过,若m< n,那么XTX是不可逆的,但是加上λ·L后则变为可逆的了。

4) 正则化逻辑回归

\[J(θ)=-\frac{1}{m} \{\sum_{i=1}^m[ y^{(i)} log(h_θ(x^{(i)}))+(1-y^{(i)})log(1-h_θ(x^{(i)}))]\} + \frac{λ}{2m}\sum_{j=1}^n θ_j^2\]

梯度下降过程


MARSGGBO♥原创







2017-8-2

Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化

    Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归  R ...

  2. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  3. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  4. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  5. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  6. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  7. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  8. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  9. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

随机推荐

  1. Unity3D Image 组件附入图片问题

    作为新手经常会看到有个Image的组件 代码中理所当然的public 发现图片并不能附入其中, 解决办法直接 public Sprite 就可以了

  2. JavaScript一个生成文档目录的实例

    执行结果: <body> <script type="text/javascript"> /** * 这个模块注册一个可在页面加载完成后自动运行的匿名函数, ...

  3. 面向对象15.3String类-常见功能-判断

    /*3.判断 * 3.1两个字符串内容是否相同? * boolean equals(Object obj)(参数是Object,不是String,因为equals是覆盖Object里面的equals方 ...

  4. pgsql 递归查询 分页

    --向下查询 WITH RECURSIVE res AS ( union ALL SELECT t_tree.* FROM t_tree, res WHERE t_tree.pid = res.id ...

  5. POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)

    POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...

  6. 使用travis-ci自动部署github上的项目

    travis-ci是什么? 一个使用yaml格式配置用于持续集成完成自动化测试部署的开源项目 官网:https://travis-ci.org/ 使用travis-ci集成vue.js项目 首先,您需 ...

  7. 利用pyinstaller将python脚本打包发布

    之前写了一个小工具,将excel配置表转换为json.xml.lua等配置文件.最近在学习egret,正好需要转换配置文件,刚好就用上了.然而当我想把工具拷到工作目录时,就发愁了.之前我为了方便扩展, ...

  8. Java 简单的 socket 编程入门实战

    这个是给女朋友写的:) 首先需要知道我们每个电脑都可以成为server(服务器) 和 client(客户端) 我们需要使用java来实现客户端与服务器的数据传输 先帖上代码 注意这里两张代码处于两个j ...

  9. 【viewport】移动设备的兼容性问题

    前段时间用微信开发者工具重构一个菜单项目的时候发现iphoneSE显示不全以及布局错乱的问题,找到了一个简单粗暴的解决方法.     移动设备上的viewport分为layout viewport  ...

  10. Java基础之接口与抽象类及多态、内部类

    final关键字 被其修饰的类,不能被继承. 被其修饰的方法,不能被覆盖. 被其修饰的变量,是一个常量,不能被修改,所以定义时必须初始化(和C++的const类似). 一般有final,会搭配stat ...