Supervised Learning and Unsupervised Learning
Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
Supervised learning problems are categorized into "regression" and "classification" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.
Example 1:
Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.
Example 2:
(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture
(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.
Unsupervised Learning
Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
We can derive this structure by clustering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the prediction results.
Example:
Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.
Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).
Supervised Learning and Unsupervised Learning的更多相关文章
- What is the difference between supervised learning and unsupervised learning?
Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algor ...
- (转)Predictive learning vs. representation learning 预测学习 与 表示学习
Predictive learning vs. representation learning 预测学习 与 表示学习 When you take a machine learning class, ...
- supervised learning|unsupervised learning
监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
- Unsupervised Learning: Use Cases
Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...
- 转:无监督特征学习——Unsupervised feature learning and deep learning
http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...
- 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类
@(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...
- Unsupervised learning, attention, and other mysteries
Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...
随机推荐
- [UIKit学习]02.关于UIButton
按钮的功能比较多,既能显示文字,又能显示图片,还能随时调整内部图片和文字的位置 按钮也是一种容器,在这一点上跟UIView类似 按钮的三种状态 normal(普通状态) 默认情况(Default) 对 ...
- angular directive自定义指令
先来看一下自定义指令的写法 app.directive('', ['', function(){ // Runs during compile return { // name: '', // pri ...
- E - 今年暑假不AC HDU - 2037
"今年暑假不AC?" "是的." "那你干什么呢?" "看世界杯呀,笨蛋!" "@#$%^&* ...
- 基于Quartz实现简单的定时发送邮件
一.什么是Quartz Quartz 是一个轻量级任务调度框架,只需要做些简单的配置就可以使用:它可以支持持久化的任务存储,即使是任务中断或服务重启后,仍可以继续运行.Quartz既可以做为独立的应用 ...
- Dubbo服务接口的设计原则
1.接口粒度 1.1 服务接口尽可能大粒度,每个服务方法应代表一个功能,而不是某功能的一个步骤,否则将面临分布式事务问题,Dubbo暂未提供分布式事务支持.同时可以减少系统间的网络交互. 1.2 服务 ...
- JavaWeb(五)之JSTL标签库
前言 前面介绍了EL表达式,其实EL表达式基本上是和JSTL核心标签库搭配一起使用才能发挥效果的.接下来让我们一起来认识一下吧! 在之前我们学过在JSP页面上为了不使用脚本,所以我们有了JSP内置的行 ...
- 我真的知道JavaScript吗?
JavaScript 说说JavaScript 接触JavaScript时间其实已经不短了,之前一直是半瓶酱油,东凑西凑的收集相关的知识.并没有完整系统的学习过JavaScript,觉得JavaScr ...
- NOIP 11.01 应试记录
快排代码 void quicksort(int left,int right) { int u,j,t,temp; if(letf>right) return; temp=a[left]; i= ...
- 醒醒吧!互联网的真正未来不是AI,更不是VR,AR,而是区块链
这些力量并非命运,而是轨迹.他们提供的并不是我们将去向何方的预测,而是告诉我们,在不远的将来,我们会向那个方向前行,必然而然. ---凯文•凯利 文字与货币 人类在演化过程中,凭借智慧创造了无数事物, ...
- VNC实现Windows远程访问Ubuntu 16.04(无需安装第三方桌面)
本文主要是讲解如果理由VNC实现Windows远程访问Ubuntu 16.04,其实网上有很多类似教程,但是很多需要安装第三方桌面(xfce桌面等等),而且很多人不太喜欢安装第三方桌面,很多人像笔者一 ...