【BZOJ1009】[HNOI2008]GT考试

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

题解:虽然AC自动机的fail和KMP的next只差了那么一点点,但为什么感觉AC自动机比KMP好理解100倍~

好吧我们还是用KMP,先求出next数组,然后用f[i][j]表示i位数,第i位数匹配到了模板串的第j位时的方案数

然后从0..9枚举第i+1位,设加入了第i+1位后匹配到了位置k,则有f[i+1][k]+=f[i][j]

若第i位正好匹配成功,此时k=m,则f[i+1][m]+=f[i][j]

显然我们可以用矩乘来优化这个DP过程,我们令x[i][j]表示经过1次匹配后,从位置i匹配到了位置j的方案数。那么对于上面所有符合条件的(j,k),我们都令x[j][k]=1,初始ans[0][0]=1。然后ans*=x^N,答案就是∑ans[0][0...m-1]

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int next[25];
char str[25];
typedef struct matrix
{
int v[25][25];
}M;
M x,ans,emp;
int n,m,mod,sum;
M mmul(M a,M b)
{
M c=emp;
int i,j,k;
for(i=0;i<=m;i++)
for(j=0;j<=m;j++)
for(k=0;k<=m;k++)
c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%mod;
return c;
}
void pm(int y)
{
while(y)
{
if(y&1) ans=mmul(ans,x);
x=mmul(x,x),y>>=1;
}
}
int main()
{
scanf("%d%d%d%s",&n,&m,&mod,str);
int i=0,j=-1,k;
next[0]=-1;
while(i<m-1)
{
if(j==-1||str[i]==str[j]) next[++i]=++j;
else j=next[j];
}
for(i=0;i<m;i++)
{
for(j=0;j<=9;j++)
{
k=i;
while(k!=-1&&str[k]-'0'!=j) k=next[k];
x.v[i][k+1]++;
}
}
x.v[m][m]=10,ans.v[0][0]=1;
pm(n);
for(i=0;i<m;i++) sum=(sum+ans.v[0][i])%mod;
printf("%d",sum);
return 0;
}

【BZOJ1009】[HNOI2008]GT考试 next数组+矩阵乘法的更多相关文章

  1. bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)

    1009: [HNOI2008]GT考试 题目:传送门 题解: 看这第一眼是不是瞬间想起组合数学??? 没错...这样想你就GG了! 其实这是一道稍有隐藏的矩阵乘法,好题! 首先我们可以简化一下题意: ...

  2. [BZOJ1009] [HNOI2008] GT考试 (KMP & dp & 矩阵乘法)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...

  3. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  4. 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2745  Solved: 1694[Submit][Statu ...

  5. 【BZOJ】1009: [HNOI2008]GT考试(dp+矩阵乘法+kmp+神题)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1009 好神的题orzzzzzzzzzz 首先我是连递推方程都想不出的人...一直想用组合来搞..看来 ...

  6. BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

    标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...

  7. HNOI2008 GT考试 (KMP + 矩阵乘法)

    传送门 这道题目的题意描述,通俗一点说就是这样:有一个长度为n的数字串(其中每一位都可以是0到9之间任意一个数字),给定一个长度为m的模式串,求有多少种情况,使得此模式串不为数字串的任意一个子串.结果 ...

  8. P3193 [HNOI2008]GT考试(KMP+矩阵乘法加速dp)

    P3193 [HNOI2008]GT考试 思路: 设\(dp(i,j)\)为\(N\)位数从高到低第\(i\)位时,不吉利数字在第\(j\)位时的情况总数,那么转移方程就为: \[dp(i,j)=dp ...

  9. 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)

    传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...

随机推荐

  1. Android的学习之路(四)项目中清单文件的学习和android中经常使用的显示单位

    1.所谓的清单文件就是项目中的AndroidManifest.xml文件.这个文件但是有大用处的.比方:app的名字,图标.app支持的版本号app的包名等等.以下我就介绍下这个清单文件的各个參数的作 ...

  2. Mysql 日期时间类型详解

    MySQL 中有多种数据类型可以用于日期和时间的表示,不同的版本可能有所差异,表3-2 中列出了MySQL 5.0 中所支持的日期和时间类型. 这些数据类型的主要区别如下: * 如果要用来表示年月日 ...

  3. unity, editorWindow lose data when enter play mode

    我写了个editorWindow,其中有个成员变量m_x,在创建editorWindow的时候为m_x赋的值,而在editorWindow的OnGUI里把m_x显示出来. 当我开着这个editorWi ...

  4. cygwin 运行java的一些记录

    javac编译没问题,但是java执行就不行,处理方式如下 其实就是把宿主机下的java.exe在cygwin下搞一个快捷方式 关于路径问题,可以使用cygpath命令进行宿主机和cygwin间的转换 ...

  5. scikit-learn:4.5. Random Projection

    參考:http://scikit-learn.org/stable/modules/random_projection.html The sklearn.random_projection modul ...

  6. iTunes历史各个版本下载地址

    地址:http://www.oldapps.com/itunes.php

  7. hadoop三大组件的简单图解

    如有不对,欢迎大家指正

  8. Redis的字典扩容与ConcurrentHashMap的扩容策略比较

    本文介绍Redis的字典(是种Map)扩容与ConcurrentHashMap的扩容策略,并比较它们的优缺点. (不讨论它们的实现细节) 首先Redis的字典采用的是一种‘’单线程渐进式rehash‘ ...

  9. 解决centos7 开机/etc/rc.local 不执行的问题

    最近发现centos7 的/etc/rc.local不会开机执行,于是认真看了下/etc/rc.local文件内容的就发现了问题的原因了 ? 1 2 3 4 5 6 7 8 9 10 11 #!/bi ...

  10. hdu6125 Free from square 分组背包+状态压缩

    /** 题目:hdu6125 Free from square 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6125 题意: 从不大于n的所有正整数中选出 ...