新浪网分类资讯爬虫

爬取新浪网导航页所有下所有大类、小类、小类里的子链接,以及子链接页面的新闻内容。

效果演示图:

items.py

import scrapy
import sys
reload(sys)
sys.setdefaultencoding("utf-8") class SinaItem(scrapy.Item):
# 大类的标题 和 url
parentTitle = scrapy.Field()
parentUrls = scrapy.Field() # 小类的标题 和 子url
subTitle = scrapy.Field()
subUrls = scrapy.Field() # 小类目录存储路径
subFilename = scrapy.Field() # 小类下的子链接
sonUrls = scrapy.Field() # 文章标题和内容
head = scrapy.Field()
content = scrapy.Field()

spiders/sina.py

# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*- from Sina.items import SinaItem
import scrapy
import os import sys
reload(sys)
sys.setdefaultencoding("utf-8") class SinaSpider(scrapy.Spider):
name= "sina"
allowed_domains= ["sina.com.cn"]
start_urls= [
"http://news.sina.com.cn/guide/"
] def parse(self, response):
items= []
# 所有大类的url 和 标题
parentUrls = response.xpath('//div[@id=\"tab01\"]/div/h3/a/@href').extract()
parentTitle = response.xpath("//div[@id=\"tab01\"]/div/h3/a/text()").extract() # 所有小类的ur 和 标题
subUrls = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/@href').extract()
subTitle = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/text()').extract() #爬取所有大类
for i in range(0, len(parentTitle)):
# 指定大类目录的路径和目录名
parentFilename = "./Data/" + parentTitle[i] #如果目录不存在,则创建目录
if(not os.path.exists(parentFilename)):
os.makedirs(parentFilename) # 爬取所有小类
for j in range(0, len(subUrls)):
item = SinaItem() # 保存大类的title和urls
item['parentTitle'] = parentTitle[i]
item['parentUrls'] = parentUrls[i] # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
if_belong = subUrls[j].startswith(item['parentUrls']) # 如果属于本大类,将存储目录放在本大类目录下
if(if_belong):
subFilename =parentFilename + '/'+ subTitle[j]
# 如果目录不存在,则创建目录
if(not os.path.exists(subFilename)):
os.makedirs(subFilename) # 存储 小类url、title和filename字段数据
item['subUrls'] = subUrls[j]
item['subTitle'] =subTitle[j]
item['subFilename'] = subFilename items.append(item) #发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理
for item in items:
yield scrapy.Request( url = item['subUrls'], meta={'meta_1': item}, callback=self.second_parse) #对于返回的小类的url,再进行递归请求
def second_parse(self, response):
# 提取每次Response的meta数据
meta_1= response.meta['meta_1'] # 取出小类里所有子链接
sonUrls = response.xpath('//a/@href').extract() items= []
for i in range(0, len(sonUrls)):
# 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls']) # 如果属于本大类,获取字段值放在同一个item下便于传输
if(if_belong):
item = SinaItem()
item['parentTitle'] =meta_1['parentTitle']
item['parentUrls'] =meta_1['parentUrls']
item['subUrls'] = meta_1['subUrls']
item['subTitle'] = meta_1['subTitle']
item['subFilename'] = meta_1['subFilename']
item['sonUrls'] = sonUrls[i]
items.append(item) #发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理
for item in items:
yield scrapy.Request(url=item['sonUrls'], meta={'meta_2':item}, callback = self.detail_parse) # 数据解析方法,获取文章标题和内容
def detail_parse(self, response):
item = response.meta['meta_2']
content = ""
head = response.xpath('//h1[@id=\"main_title\"]/text()')
content_list = response.xpath('//div[@id=\"artibody\"]/p/text()').extract() # 将p标签里的文本内容合并到一起
for content_one in content_list:
content += content_one item['head']= head
item['content']= content yield item

pipelines.py

from scrapy import signals
import sys
reload(sys)
sys.setdefaultencoding("utf-8") class SinaPipeline(object):
def process_item(self, item, spider):
sonUrls = item['sonUrls'] # 文件名为子链接url中间部分,并将 / 替换为 _,保存为 .txt格式
filename = sonUrls[7:-6].replace('/','_')
filename += ".txt" fp = open(item['subFilename']+'/'+filename, 'w')
fp.write(item['content'])
fp.close() return item

settings.py

BOT_NAME = 'Sina'

SPIDER_MODULES = ['Sina.spiders']
NEWSPIDER_MODULE = 'Sina.spiders' ITEM_PIPELINES = {
'Sina.pipelines.SinaPipeline': 300,
} LOG_LEVEL = 'DEBUG'

在项目根目录下新建main.py文件,用于调试

from scrapy import cmdline
cmdline.execute('scrapy crawl sina'.split())

执行程序

py2 main.py

爬虫框架Scrapy之案例二的更多相关文章

  1. Python爬虫框架Scrapy实例(二)

    目标任务:使用Scrapy框架爬取新浪网导航页所有大类.小类.小类里的子链接.以及子链接页面的新闻内容,最后保存到本地. 大类小类如下图所示: 点击国内这个小类,进入页面后效果如下图(部分截图): 查 ...

  2. 爬虫框架Scrapy之案例三图片下载器

    items.py class CoserItem(scrapy.Item): url = scrapy.Field() name = scrapy.Field() info = scrapy.Fiel ...

  3. 爬虫框架Scrapy之案例一

    阳光热线问政平台 http://wz.sun0769.com/index.php/question/questionType?type=4 爬取投诉帖子的编号.帖子的url.帖子的标题,和帖子里的内容 ...

  4. 小白学 Python 爬虫(34):爬虫框架 Scrapy 入门基础(二)

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  5. 教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神

    本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http://www.xiaohuar.com/,让你体验爬取校花的成就感. Scr ...

  6. 【转载】教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神

    原文:教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神 本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http:/ ...

  7. 网络爬虫框架Scrapy简介

    作者: 黄进(QQ:7149101) 一. 网络爬虫 网络爬虫(又被称为网页蜘蛛,网络机器人),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本:它是一个自动提取网页的程序,它为搜索引擎从万维 ...

  8. 小白学 Python 爬虫(35):爬虫框架 Scrapy 入门基础(三) Selector 选择器

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  9. 小白学 Python 爬虫(36):爬虫框架 Scrapy 入门基础(四) Downloader Middleware

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

随机推荐

  1. h5+的Downloader下载网络图片缓存到本地的案例

    之前展示图片都是通过<img src="网络图片地址"> , 每次都请求服务器, 加载比较慢;如何做到显示图片的时候先从本地获取,没有则联网下载,缓存到本地;下次直接从 ...

  2. SOCKS5的出现缓解了各种具体协议需要专门设计代理协议的困难局面

    socks5_百度百科 https://baike.baidu.com/item/socks5/8915011?fr=aladdin 如果您的机器具有一个合法的 Internet IP 地址, 或者您 ...

  3. Spark Standalone Mode 单机启动Spark -- 分布式计算系统spark学习(一)

    spark是个啥? Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发. Spark和Hadoop有什么不同呢? Spark是基于map reduce算法实现的分布式计算,拥 ...

  4. HTTP和HTTPS的请求和响应

    HTTP协议(HyperText Transfer Protocol,超文本传输协议):是一种发布和接收 HTML页面的方法.HTTPS(Hypertext Transfer Protocol ove ...

  5. POJ-3131-Cubic Eight-Puzzle(双向BFS+哈希)

    Description Let's play a puzzle using eight cubes placed on a 3 × 3 board leaving one empty square. ...

  6. JavaScript日期处理

    一.Date类型 在讲述常见日期问题之前,先梳理一下Date类型的方法. ECMAScript中的Date类型使用自UTC(Coordinated in Universal Time,国际协调时间)1 ...

  7. Spring框架第五篇之Spring与AOP

    一.AOP概述 AOP(Aspect Orient Programming),面向切面编程,是面向对象编程OOP的一种补充.面向对象编程是从静态角度考虑程序的结构,而面向切面编程是从动态角度考虑程序运 ...

  8. Django:学习笔记(9)——用户身份认证

    Django:学习笔记(9)——用户身份认证 User

  9. xampp mac 版安装

    欢迎光临 XAMPP 的 Mac OS X 版 适用于 Mac OS X 的 XAMPP 是 Mac OS X 上最简单,最实用,也最完整的网络服务器解决方案.该发行版包括整合了最新的 MySQL.P ...

  10. 基于TSUNG对MQTT进行压力测试-测试结果

    一.TSUNG压测前概念温习 https://www.cnblogs.com/lingyejun/p/7898873.html 二.TSUNG在服务器上的安装步骤 Tsung压测时总连接数 = 本机可 ...