目录

1 问题描述

2 解决方案

2.1 基于减治法实现

2.2 基于深度优先查找实现


1 问题描述

给定一个有向图,求取此图的拓扑排序序列。

那么,何为拓扑排序?

定义:将有向图中的顶点以线性方式进行排序。即对于任何连接自顶点u到顶点v的有向边uv,在最后的排序结果中,顶点u总是在顶点v的前面


2 解决方案

2.1 基于减治法实现

实现原理:不断地做这样一件事,在余下的有向图中求取一个源(source)(PS:定义入度为0的顶点为有向图的源),它是一个没有输入边的顶点,然后把它和所有从它出发的边都删除。(如果有多个这样的源,可以任意选择一个。如果这样的源不存在,算法停止,此时该问题无解),下面给出《算法设计与分析基础》第三版上一个配图:

具体代码如下:

package com.liuzhen.chapterFour;

import java.util.Stack;

public class TopologicalSorting {
//方法1:基于减治法:寻找图中入度为0的顶点作为即将遍历的顶点,遍历完后,将此顶点从图中删除
/*
* 参数adjMatrix:给出图的邻接矩阵值
* 参数source:给出图的每个顶点的入度值
* 该函数功能:返回给出图的拓扑排序序列
*/
public char[] getSourceSort(int[][] adjMatrix,int[] source){
int len = source.length; //给出图的顶点个数
char[] result = new char[len]; //定义最终返回路径字符数组
int count = 0; //用于计算当前遍历的顶点个数
boolean judge = true;
while(judge){
for(int i = 0;i < source.length;i++){
if(source[i] == 0){ //当第i个顶点入度为0时,遍历该顶点
result[count++] = (char) ('a'+i);
source[i] = -1; //代表第i个顶点已被遍历
for(int j = 0;j < adjMatrix[0].length;j++){ //寻找第i个顶点的出度顶点
if(adjMatrix[i][j] == 1)
source[j] -= 1; //第j个顶点的入度减1
}
}
}
if(count == len)
judge = false;
}
return result;
}
/*
* 参数adjMatrix:给出图的邻接矩阵值
* 函数功能:返回给出图每个顶点的入度值
*/
public int[] getSource(int[][] adjMatrix){
int len = adjMatrix[0].length;
int[] source = new int[len];
for(int i = 0;i < len;i++){
//若邻接矩阵中第i列含有m个1,则在该列的节点就包含m个入度,即source[i] = m
int count = 0;
for(int j = 0;j < len;j++){
if(adjMatrix[j][i] == 1)
count++;
}
source[i] = count;
}
return source;
} public static void main(String[] args){
TopologicalSorting test = new TopologicalSorting();
int[][] adjMatrix = {{0,0,1,0,0},{0,0,1,0,0},{0,0,0,1,1},{0,0,0,0,1},{0,0,0,0,0}};
int[] source = test.getSource(adjMatrix);
System.out.println("给出图的所有节点(按照字母顺序排列)的入度值:");
for(int i = 0;i < source.length;i++)
System.out.print(source[i]+"\t");
System.out.println();
char[] result = test.getSourceSort(adjMatrix, source); System.out.println("给出图的拓扑排序结果:");
for(int i = 0;i < result.length;i++)
System.out.print(result[i]+"\t");
}
}

 运行结果:

给出图的所有节点(按照字母顺序排列)的入度值:
0 0 2 1 2
给出图的拓扑排序结果:
a b c d e

2.2 基于深度优先查找实现

引用自网友博客中一段解释:

除了使用上面2.1中所示算法之外,还能够借助深度优先遍历来实现拓扑排序。这个时候需要使用到栈结构来记录拓扑排序的结果。

同样摘录一段维基百科上的伪码:

L ← Empty list that will contain the sorted nodes
S ← Set of all nodes with no outgoing edges
for each node n in S do
    visit(n) 
function visit(node n)
    if n has not been visited yet then
        mark n as visited
        for each node m with an edgefrom m to ndo
            visit(m)
        add n to L

DFS的实现更加简单直观,使用递归实现。利用DFS实现拓扑排序,实际上只需要添加一行代码,即上面伪码中的最后一行:add n to L。

需要注意的是,将顶点添加到结果List中的时机是在visit方法即将退出之时

此处重点在于理解:上面伪码中的最后一行:add n to L,对于这一行的理解重点在于对于递归算法执行顺序的理解,递归执行顺序的核心包括两点:1.先执行递归,后进行回溯;2.遵循栈的特性,先进后出。此处可以参考本人另外一篇博客:算法笔记_017:递归执行顺序的探讨(Java)

下面请看一个出自《算法设计与分析基础》第三版上一个配图:

具体代码如下:

package com.liuzhen.chapterFour;

import java.util.Stack;

public class TopologicalSorting {

    //方法2:基于深度优先查找发(DFS)获取拓扑排序
public int count1 = 0;
public Stack<Character> result1;
/*
* adjMatrix是待遍历图的邻接矩阵
* value是待遍历图顶点用于是否被遍历的判断依据,0代表未遍历,非0代表已被遍历
*/
public void dfs(int[][] adjMatrix,int[] value){
result1 = new Stack<Character>();
for(int i = 0;i < value.length;i++){
if(value[i] == 0)
dfsVisit(adjMatrix,value,i);
}
}
/*
* adjMatrix是待遍历图的邻接矩阵
* value是待遍历图顶点用于是否被遍历的判断依据,0代表未遍历,非0代表已被遍历
* number是当前正在遍历的顶点在邻接矩阵中的数组下标编号
*/
public void dfsVisit(int[][] adjMatrix,int[] value,int number){
value[number] = ++count1; //把++count1赋值给当前正在遍历顶点判断值数组元素,变为非0,代表已被遍历
for(int i = 0;i < value.length;i++){
if(adjMatrix[number][i] == 1 && value[i] == 0) //当,当前顶点的相邻有相邻顶点可行走且其为被遍历
dfsVisit(adjMatrix,value,i); //执行递归,行走第i个顶点
}
char temp = (char) ('a' + number);
result1.push(temp);
} public static void main(String[] args){
TopologicalSorting test = new TopologicalSorting();
int[][] adjMatrix = {{0,0,1,0,0},{0,0,1,0,0},{0,0,0,1,1},{0,0,0,0,1},{0,0,0,0,0}}; int[] value = new int[5];
test.dfs(adjMatrix, value);
System.out.println();
System.out.println("使用DFS方法得到拓扑排序序列的逆序:");
System.out.println(test.result1);
System.out.println("使用DFS方法得到拓扑排序序列:");
while(!test.result1.empty())
System.out.print(test.result1.pop()+"\t"); }
}

运行结果:

使用DFS方法得到拓扑排序序列的逆序:
[e, d, c, a, b]
使用DFS方法得到拓扑排序序列:
b a c d e

参考资料:

1.拓扑排序的原理及其实现

算法笔记_023:拓扑排序(Java)的更多相关文章

  1. 算法笔记_145:拓扑排序的应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 给出一些球,从1~N编号,他们的重量都不相同,也用1~N标记加以区分(这里真心恶毒啊,估计很多WA都是因为这里),然后给出一些约束条件,< a ...

  2. 算法笔记_018:旅行商问题(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 减治法 2.2.1 Johson-Trotter算法 2.2.2 基于字典序的算法   1 问题描述 何为旅行商问题?按照非专业的说法,这个问 ...

  3. 有向图和拓扑排序Java实现

    package practice; import java.util.ArrayDeque; import java.util.Iterator; import java.util.Stack; pu ...

  4. 算法练习5---快速排序Java版

    基本思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成 ...

  5. 【Python排序搜索基本算法】之拓扑排序

    拓扑排序是对有向无环图的一种排序,满足例如以下两个条件: 1.每一个顶点出现且仅仅出现一次. 2.若A在序列中排在B的前面.则在图中不存在从B到A的路径. 如上的无环有向图,v表示顶点:v=['a', ...

  6. 算法笔记_014:合并排序(Java)

    1 问题描述 给定一组数据,使用合并排序得到这组数据的非降序排列. 2 解决方案 2.1 合并排序原理简介 引用自百度百科: 合并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Div ...

  7. 算法笔记_129:计数排序(Java)

    目录 1 问题描述 2 解决方案 2.1比较计数排序 2.2 分布计数排序   1 问题描述 给定一组数据,请使用计数排序,得到这组数据从小到大的排序序列. 2 解决方案 2.1比较计数排序 下面算法 ...

  8. 算法笔记_036:预排序(Java)

    目录 1 问题描述 2 解决方案 2.1 检验数组中元素的唯一性 2.2 模式计算   1 问题描述 在计算机科学中,预排序是一种很古老的思想.实际上,对于排序算法的兴趣很大程度上是因为这样一个事实: ...

  9. 算法练习4---冒泡排序java版

    冒泡排序的基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即:每当两相邻的数比较后发现它们的排序与排序要求相反 ...

随机推荐

  1. Angular Material Starter App

      介绍 Material Design反映了Google基于Android 5.0 Lollipop操作系统的原生应用UI开发理念,而AngularJS还发起了一个Angular Material ...

  2. codeforce 429D. Tricky Function (思维暴力过)

    题目描述 Iahub and Sorin are the best competitive programmers in their town. However, they can't both qu ...

  3. [APIO2018]铁人两项 --- 圆方树

     [APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...

  4. bzoj 2045: 双亲数

    2045: 双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描 ...

  5. 20162325 金立清 S2 W8 C17

    20162325 2017-2018-2 <程序设计与数据结构>第8周学习总结 教材学习内容概要 二叉查找树是一棵二叉树,对于其中的每个结点,左子树上的元素小于父结点的值,而右子树上的元素 ...

  6. VK Cup 2016 - Qualification Round 1 (Russian-Speaking Only, for VK Cup teams) A. Voting for Photos 水题

    A. Voting for Photos 题目连接: http://www.codeforces.com/contest/637/problem/A Description After celebra ...

  7. 《python学习手册》第34章 异常对象

    基于字符串的异常 python在2.6之前可以使用字符串来定义异常,并且是通过对象标识符来匹配的(即通过is 而不是==) myexc = "My excetion string" ...

  8. [转]web服务器apache架构与原理 &apache 监控

    web服务器                                                                                在开始了解Apache前,我 ...

  9. 如何终止JQUERY的$.AJAX请求

    最近遇到,如果用户频繁点击ajax请求,有两个问题: 1,如果连续点击了5个ajax请求,前4个其实是无效的,趁早结束节省资源. 2,更严重的问题是:最后一个发送的请求,响应未必是最后一个,有可能造成 ...

  10. Tasker文件夹说明

    ################导入类#################路径 类型 后缀名 /tasker/profiles/ 配置 .prf.xml /tasker/projects/ 项目 .pr ...