题意

PDF

分析

考虑dp.

用\(d(i,j)\)表示用不超过i的立方凑成j的方案数。

\(d(i,j)=d(i-1,j)+d(i,j-i^3)\)

时间复杂度\(O(IN+T)\)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
    rg T data=0;
    rg int w=1;
    rg char ch=getchar();
    while(!isdigit(ch))
    {
        if(ch=='-')
            w=-1;
        ch=getchar();
    }
    while(isdigit(ch))
    {
        data=data*10+ch-'0';
        ch=getchar();
    }
    return data*w;
}
template<class T>T read(T&x)
{
    return x=read<T>();
}
using namespace std;
typedef long long ll;

co int I=21,N=1e4;
ll d[I+1][N+1];

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    d[0][0]=1;
    for(int i=1;i<=I;++i)
        for(int j=0;j<=N;++j)
        {
            d[i][j]=d[i-1][j];
            if(i*i*i<=j)
                d[i][j]+=d[i][j-i*i*i];
        }
    int n;
    while(~scanf("%d",&n))
        printf("%lld\n",d[I][n]);
    return 0;
}

UVA11137 Ingenuous Cubrency的更多相关文章

  1. UVA11137 Ingenuous Cubrency 完全背包 递推式子

    做数论都做傻了,这道题目 有推荐,当时的分类放在了递推里面,然后我就不停的去推啊推啊,后来推出来了,可是小一点的数 输出答案都没问题,大一点的数 输出答案就是错的,实在是不知道为什么,后来又不停的看, ...

  2. uva 11137 Ingenuous Cubrency

    // uva 11137 Ingenuous Cubrency // // 题目大意: // // 输入正整数n,将n写成若干个数的立方之和,有多少种 // // 解题思路: // // 注意到n只有 ...

  3. UVA 11137 Ingenuous Cubrency(dp)

    Ingenuous Cubrency 又是dp问题,我又想了2 30分钟,一点思路也没有,最后又是看的题解,哎,为什么我做dp的题这么烂啊! [题目链接]Ingenuous Cubrency [题目类 ...

  4. uva 11137 Ingenuous Cubrency(完全背包)

    题目连接:11137 - Ingenuous Cubrency 题目大意:由21种规模的立方体(r 1~21),现在给出一个体积, 要求计算可以用多少种方式组成. 解题思路:完全背包, 和uva674 ...

  5. UVA - 11137 Ingenuous Cubrency[背包DP]

    People in Cubeland use cubic coins. Not only the unit of currency iscalled a cube but also the coins ...

  6. UVa 11137 (完全背包方案数) Ingenuous Cubrency

    题意:用13.23……k3这些数加起来组成n,输出总方案数 d(i, j)表示前i个数构成j的方案数则有 d(i, j) = d(i-1, j) + d(i, j - i3) 可以像01背包那样用滚动 ...

  7. 【Java】【滚动数组】【动态规划】UVA - 11137 - Ingenuous Cubrency

    滚动数组优化自己画一下就明白了. http://blog.csdn.net/u014800748/article/details/45849217 解题思路:本题利用递推关系解决.建立一个多段图,定义 ...

  8. 【UVA】11137-Ingenuous Cubrency

    DP问题,须要打表. dp[i][j]代表利用大小不超过i的数字组成j的方法. 状态方程是 dp[i][j] = d[i - 1][j] + sum{dp[i - 1][j - k * i * i * ...

  9. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

随机推荐

  1. 缓存技术内部交流_03_Cache Aside

    参考资料: http://www.ehcache.org/documentation/3.2/caching-patterns.html http://www.ehcache.org/document ...

  2. PWA web应用模型

    2018年的第一篇博客,最近都去挤图书馆了,希望新年新气象... 简介 PWA 是一门Google推出的web前端新技术,全称是Progressive Web App,是Google在2015年提出, ...

  3. 第七天 Linux用户管理、RHEL6.5及RHEL7.2 root密码破解、RHEL6.5安装vmware tools

    1.Linux用户管理 Linux系统中,存在三种用户 A.超级用户:root 最高权限,至高无上 在windows中 administrator是可以登录的最高权限,但是,system权限最高,不能 ...

  4. http://blog.csdn.net/milton2017/article/details/54406482

    转自:python 把几个DataFrame合并成一个DataFrame——merge,append,join,conca http://blog.csdn.net/zutsoft/article/d ...

  5. oracle11g客户端如何完全卸载(转)

    1.停用Oracle服务:进入计算机管理,在服务中,找到oracle开头的所有服务,右击选择停止 2.在开始菜单中,找到Universal Installer,运行Oracle Universal I ...

  6. UVA-10765 Doves and bombs (双连通分量)

    题目大意:给一个n个点的无向连通图,找出删除某个点后的连通块个数. 题目分析:统计一下每个节点属于几个双连通分量,若是割点,得到的便是答案,否则答案为1. 代码如下: # include<ios ...

  7. yii2出现的400错误

    来一段百度来的正常解决方法,注意有很大的坑! 第一种解决办法是关闭Csrf 1配置文件关闭 2控制器里面关闭 public function init(){ $this->enableCsrfV ...

  8. HDU 4669 Mutiples on a circle 不知道该归为哪一类。

    题意:给你N个珠宝和一个K,每个珠宝上面都有数字,这个珠宝做成项链,把珠宝上的数字拼起来如果可以整除掉K,那么久说这个数字为wonderful value,问你有多少种方案可以组成WONDERFUL ...

  9. IOS-网络(网页开发-UIWebView,HTML,CSS,JavaScript,OC和JS代码互调)

    一.网页基础 // // ViewController.m // IOS_0218_网页开发1 // // Created by ma c on 16/2/18. // Copyright © 201 ...

  10. 移动端点击(click)事件延迟问题的产生与解决方法

    http://blog.csdn.net/xjun0812/article/details/64919063 问题的发现 上班做项目的时候碰到一个移动端项目,其中有个小游戏,相当于天上掉馅饼,用户需要 ...