【BZOJ】2693: jzptab 莫比乌斯反演
【题意】2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000。
【算法】数论(莫比乌斯反演)
【题解】由上一题,
$ans=\sum_{g\leq min(n,m)}g\sum_{d\leq min(n/g,m/g)}\mu (d)*d^2*sum(n/gd,m/gd)$
令T=gd
$ans=\sum_{T\leq min(n,m)}sum(n/T,m/T)*T\sum_{d|T}\mu (d)*d$
后面部分由积性函数的乘积和约数和也是积性函数可以线性筛得出。
当i%prime[j]=0时,相对于i多出来的因子必然由重复因子即μ(d)=0,故无视即可。
复杂度O(n+T√n)。
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1e7,maxn=1e7+,MOD=1e8+;//
int s[maxn],sum[maxn],prime[maxn],tot,n,m;
bool mark[maxn];
int SUM(int x,int y){return 1ll*(1ll*x*(x+)/%MOD)*(1ll*y*(y+)/%MOD)%MOD;}
int main(){
s[]=;sum[]=;
for(int i=;i<=N;i++){
if(!mark[i]){s[prime[++tot]=i]=(-i+MOD)%MOD;}
for(int j=;j<=tot&&i*prime[j]<=N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==){s[i*prime[j]]=s[i];break;}
s[i*prime[j]]=1ll*s[i]*s[prime[j]]%MOD;
}
sum[i]=(1ll*i*s[i]+sum[i-])%MOD;
}
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int z=min(n,m),pos=,ans=;
for(int i=;i<=z;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(sum[pos]-sum[i-]+MOD)*SUM(n/i,m/i)%MOD)%MOD;
}
printf("%d\n",ans);
}
return ;
}
【BZOJ】2693: jzptab 莫比乌斯反演的更多相关文章
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- BZOJ 2693 jzptab ——莫比乌斯反演
同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...
- BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- ●BZOJ 2693 jzptab
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...
随机推荐
- lintcode-421-简化路径
421-简化路径 给定一个文档(Unix-style)的完全路径,请进行路径简化. 样例 "/home/", => "/home" "/a/./ ...
- JAVA第三次笔记
- 关于“问吧APP”问卷调查报告分析与体会
上周根据我们走廊奔跑队的“问吧APP”项目对本校范围内的学生发放了上百份调查问卷,并对此作出了统计和整理.针对我们项目所提出的问题涉及到的用户信息有性别.年龄.学历.职业.平时上网途径以及对 ...
- Hbase的安装和配置
1,准备好hbase的linux环境下的压缩包,这里hadoop版本为hadoop2.5.0,hbase版本为 2,解压缩这个版本,不选src的,其实两个任一都行 进入到hbase安装包目录,我这里的 ...
- PAT 甲级 1083 List Grades
https://pintia.cn/problem-sets/994805342720868352/problems/994805383929905152 Given a list of N stud ...
- webgl学习笔记一-绘图单点
写在前面 WebGl(全称:Web Graphics Library : web图形库) 是基于OpenGL ES 2.0的3D绘图协议. WebGL完美地解决了现有的Web交互式三维动画的两 ...
- 更新 pip & setuptools
python -m pip install -U pip setuptools
- Kafka设计解析
Kafka剖析(一):Kafka背景及架构介绍 Kafka设计解析(二):Kafka High Availability (上) Kafka设计解析(三):Kafka High Availabilit ...
- HDU3507_Print Article
这个题目又是一个典型的dp斜率优化的题目.题意是给你n个数,你需要做的是把这个n个数分为连续的若干段,每段的权值为这段数字的和的平方加上M.求最小的总权值. 我们可以根据题意写出朴素版的dp状态转移方 ...
- 【题解】CF#713 E-Sonya Partymaker
这题真的想了挺久的,然而到最后也还是没想到怎样处理环的情况……网上竟然也完全没有题解,无奈之下到 CF 的 AC 代码里面去找了一份膜拜了一下.感谢~ 由于觉得这题有一定的难度,自己看代码也看了比较久 ...