【BZOJ】2693: jzptab 莫比乌斯反演
【题意】2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000。
【算法】数论(莫比乌斯反演)
【题解】由上一题,
$ans=\sum_{g\leq min(n,m)}g\sum_{d\leq min(n/g,m/g)}\mu (d)*d^2*sum(n/gd,m/gd)$
令T=gd
$ans=\sum_{T\leq min(n,m)}sum(n/T,m/T)*T\sum_{d|T}\mu (d)*d$
后面部分由积性函数的乘积和约数和也是积性函数可以线性筛得出。
当i%prime[j]=0时,相对于i多出来的因子必然由重复因子即μ(d)=0,故无视即可。
复杂度O(n+T√n)。
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1e7,maxn=1e7+,MOD=1e8+;//
int s[maxn],sum[maxn],prime[maxn],tot,n,m;
bool mark[maxn];
int SUM(int x,int y){return 1ll*(1ll*x*(x+)/%MOD)*(1ll*y*(y+)/%MOD)%MOD;}
int main(){
s[]=;sum[]=;
for(int i=;i<=N;i++){
if(!mark[i]){s[prime[++tot]=i]=(-i+MOD)%MOD;}
for(int j=;j<=tot&&i*prime[j]<=N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==){s[i*prime[j]]=s[i];break;}
s[i*prime[j]]=1ll*s[i]*s[prime[j]]%MOD;
}
sum[i]=(1ll*i*s[i]+sum[i-])%MOD;
}
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int z=min(n,m),pos=,ans=;
for(int i=;i<=z;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(sum[pos]-sum[i-]+MOD)*SUM(n/i,m/i)%MOD)%MOD;
}
printf("%d\n",ans);
}
return ;
}
【BZOJ】2693: jzptab 莫比乌斯反演的更多相关文章
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- BZOJ 2693 jzptab ——莫比乌斯反演
同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...
- BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- ●BZOJ 2693 jzptab
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...
随机推荐
- lintcode-413-反转整数
413-反转整数 将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 (标记为 32 位整数). 样例 给定 x = 123,返回 321 给定 x = -123,返回 -321 标签 整数 ...
- Swift-自定义类的构造函数
构造函数类似oc中的init方法默认情况下,创建一个,类会调用一个构造函数即使没写任何构造函数,编译器会默认一个构造函数如果是继承NSObject,可以对构造函数重写 class Person: NS ...
- nginx 几个常用的标准模块介绍
ngx_http_ssl_module(https) 1:指明是否启用的虚拟主机的ssl功能 ssl on | off; 2:指明虚拟主机使用的证书文件 ssl_certificate /usr/lo ...
- 6/3 sprint2 看板和燃尽图的更新
- 使用union all 遇到的问题(俩条sql语句行数的和 不等于union all 后的 行数的和 !);遗留问题 怎么找到 相差的呐俩条数据 ?
create table buyer as SELECT b.id AS bankid FROM v_product_deal_main m, base_member b WHERE b.id = m ...
- 初探Android动画之门
原文地址:http://www.cnblogs.com/kross/p/3376451.html 最近自学了下动画的相关知识,总结为今天的文章,希望对大家有帮助. Android中的动画大致分为三种: ...
- Checkbox & Excel
Checkbox & Excel Q: Excel how to check checkbox? 这个怎么打勾✔ ? A: 可以打勾的 How to Insert and Use a Chec ...
- mybatis(一)MyBatis Generator
在gradle中使用MyBatis Generator时,build.gradle配置如下: dependencies { mybatisGenerator group: 'org.mybatis.g ...
- iOS 监听键盘高度,输入框上升
//设置输入框 ---<因为输入框用了get方法,所以第一次调用输入框要用self 调用>: self.textlab.frame=CGRectMake(, , , ); _textlab ...
- Visual Format Language(VFL)视图约束
约束(Constraint)在IOS编程中非常重要,这关乎到用户的直接体验问题. IOS中视图约束有几种方式,常见的是在IB中通过Pin的方式手动添加约束,菜单Editor->Pin->. ...