【题意】2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000。

【算法】数论(莫比乌斯反演)

【题解】由上一题,

$ans=\sum_{g\leq min(n,m)}g\sum_{d\leq min(n/g,m/g)}\mu (d)*d^2*sum(n/gd,m/gd)$

令T=gd

$ans=\sum_{T\leq min(n,m)}sum(n/T,m/T)*T\sum_{d|T}\mu (d)*d$

后面部分由积性函数的乘积和约数和也是积性函数可以线性筛得出。

当i%prime[j]=0时,相对于i多出来的因子必然由重复因子即μ(d)=0,故无视即可。

复杂度O(n+T√n)。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1e7,maxn=1e7+,MOD=1e8+;//
int s[maxn],sum[maxn],prime[maxn],tot,n,m;
bool mark[maxn];
int SUM(int x,int y){return 1ll*(1ll*x*(x+)/%MOD)*(1ll*y*(y+)/%MOD)%MOD;}
int main(){
s[]=;sum[]=;
for(int i=;i<=N;i++){
if(!mark[i]){s[prime[++tot]=i]=(-i+MOD)%MOD;}
for(int j=;j<=tot&&i*prime[j]<=N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==){s[i*prime[j]]=s[i];break;}
s[i*prime[j]]=1ll*s[i]*s[prime[j]]%MOD;
}
sum[i]=(1ll*i*s[i]+sum[i-])%MOD;
}
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int z=min(n,m),pos=,ans=;
for(int i=;i<=z;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(sum[pos]-sum[i-]+MOD)*SUM(n/i,m/i)%MOD)%MOD;
}
printf("%d\n",ans);
}
return ;
}

【BZOJ】2693: jzptab 莫比乌斯反演的更多相关文章

  1. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  2. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  3. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

  4. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

  5. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  6. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  7. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  8. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  9. ●BZOJ 2693 jzptab

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...

随机推荐

  1. Redis中的GETBIT和SETBIT(转载)

    Redis是in-memery的数据库,其优势不言而喻.详细可以阅读一下官网的介绍.https://redis.io 其主要有五种数据类型:strings,lists,sets,hashes.在学习到 ...

  2. 【SSH框架】之Struts2系列(一)

    微信公众号:compassblog 欢迎关注.转发,互相学习,共同进步! 有任何问题,请后台留言联系 1.Struts2框架概述 (1).什么是Struts2 Struts2是一种基于MVC模式的轻量 ...

  3. iOS-UICollectionViewController协议及回调

    一.UICollectionViewDataSource 1.返回Section数量的方法 - (NSInteger)numberOfSectionsInCollectionView: (UIColl ...

  4. PHP初级

    通过form  get post表单提交的数据,数据内容由用户填写或选择而得到!

  5. 1."问吧APP"客户需求调查分析

    产品名称:问吧 产品功能:实时提问回答和搜索 开发原因:任何人都会遇到问题,网上虽然有很多回答,但是互联网的信息错综复杂,开发这个APP就是为了让网络求助更加的合理有效,清除网络上的垃圾信息. 为知大 ...

  6. 2nd scrum站立会议

    scrum站立会议 站立会议是让团队成员每日面对面站立互相交流他们所承担任务的进度.它的一个附带好处是让同组成员了解到工作的情况.本质上是为了团队交流,不是会议报告. 站立会议的目的: 1.让整个团队 ...

  7. 1st 四人小组项目

    小组名称:好好学习 项目组长:林莉 组员:王东涵.宫丽君.胡丽娜 项目选题:基于jsp的车库管理系统 项目期限:十周内<暂定> 需求分析:有待进一步思考

  8. Struts2转换器配置和用法

    struts转换器:在B/S应用中,将字符串请求参数转换为相应的数据类型,是MVC框架提供的功能,而Struts2是很好的MVC框架实现者,理所当然,提供了类型转换机制. 一.类型转换的意义 对于一个 ...

  9. nginx & restart

    nginx & restart https://www.cyberciti.biz/faq/nginx-linux-restart/

  10. 第160天:Http协议的详细总结

    一.HTTP协议 超文本传输协议(HyperText Transfer Protocol),缩写HTTP.通过HTTP或者HTTPS协议请求的资源由统一资源标识符(Uniform Resource I ...