题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069

题目意思:首先解释一下d[n]这个函数表示n有多少个因子,百度一下可以知道这个函数是一个非完全积性函数,d[n]=d[i]*d[j]当且仅当i*j=n,且i和j互质,现在求一个[l,r]区间的所有数d[i^k]的和。

思路:比赛场上知道xjb推出了题目给的这个公式d(n​^k​​)=(kc​1​​+1)(kc​2​​+1)...(kc​m​​+1),还是很容易推了的,可能百度也可以找到吧,还是自己推一下比较好。这里说一下是怎么退出来了。首先对于一个数n可以质因分解出n=p1^m1*p2^m2*p3^m3……ps^ms,其中p1,p2,p3…………ps是互不相同的质数,所以每一项都是互质的。

所以d[n]=d[p1^m1]*d[p2^m2]*d[p3^m3]……d[ps^ms]。又因为n^k=[p1^m1*p2^m2*p3^m3……ps^ms]*[p1^m1*p2^m2*p3^m3……ps^ms]…………*[p1^m1*p2^m2*p3^m3……ps^ms],k项相乘,合并一下可以得到n^k=p1^(m1*k)*p2^(m2*k)*p3^(m3*k)…………ps^(ms*k),我们知道对于一个素数有两个因数,而p^k(p为素数)的因子数为k+1,我们可以这样反推这个结论。因为一个数有唯一的质因分解,所以p^k的必然分解成k个p,那么所有的p^t(0<=t<=k)必定都是p^k的因数,而p^k的因数不会再有其他数了,所以一共k+1个因子。

由以上我们证明了d(n​^k​​)=(kc​1​​+1)(kc​2​​+1)...(kc​m​​+1)这个式子,我们现在关键就是把这个式子中的每一个数的每一个c1……cm算出来即可。很明显质因分解计算每个质因子的个数。但是这里用简单的计算不行,所以这道题需要用到区间素数筛,用sqrt(r)内的素数把[l,r]的素数筛出来,那些被筛掉的数必然是被自己的质因子筛掉的。还有一点一个数n的质因子最多只有一个在sqrt(n)的右侧。所以我们建立一个orz数组初始化orz[i-l]=l,然后每次计算一个质因子对他的贡献,就他这些质因子除掉。最后对于那些orz[i-l]!=1的只有两种情况要么是素数,要么是有一个质因子在sqrt(i-l)的右侧,我们只需要再把ans[i-l]*=k+1就好了。

筛素数的时候多筛点,我因为筛少了,导致wa了5发

代码:

 //Author: xiaowuga
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mem(s,ch) memset(s,ch,sizeof(s))
const long long N=1e6+;
const long long mod=;
using namespace std;
typedef long long LL;
bool is_p_small[N];
bool is_p[N];
LL ans[N];
LL l,r,k;
LL orz[N];
LL prime[N];
LL p=;
void sieve(){
mem(is_p_small,true);
is_p_small[]=is_p_small[]=false;
for(LL i=;i<=N-;i++){
if(is_p_small[i]){
prime[p++]=i;
for(LL j=*i;j<=N-;j+=i) is_p_small[j]=false;
}
}
} void sement_sieve(LL a,LL b){
mem(is_p,true);
LL lim=ceil(sqrt(b));
for(LL i=;prime[i]<=lim;i++){
for(LL j=max(2LL,(a+prime[i]-)/prime[i])*prime[i];j<=b;j+=prime[i]){
is_p[j-a]=false;
LL res=;
while(orz[j-a]%prime[i]==){
orz[j-a]/=prime[i];
res++;
}
ans[j-a]=ans[j-a]*(res*k+)%mod;
}
}
}
int main(){
int T;
scanf("%d",&T);
sieve();
while(T--){
scanf("%lld%lld%lld",&l,&r,&k);
for(LL i=;i<=r-l+;i++) {ans[i]=;orz[i]=i+l;}
sement_sieve(l,r+);
LL sum=;
for(LL i=;i<=r-l;i++){
if(orz[i]!=) ans[i]=ans[i]*(k+);
}
for(LL i=;i<=r-l;i++){
sum=(sum+ans[i])%mod;
}
printf("%lld\n",sum);
}
return ;
}

2017 Multi-University Training Contest - Team 4——HDU6069&&Counting Divisors的更多相关文章

  1. 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...

  2. 【2017 Multi-University Training Contest - Team 4】Counting Divisors

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6069 [Description] 定义d(i)为数字i的因子个数; 求∑rld(ik) 其中l,r ...

  3. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  4. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  5. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  6. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  7. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  8. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

随机推荐

  1. delphi无边框可拖动窗体

    unit UFrmModless; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, ...

  2. Hp && Dell服务器硬件监控

    HP 安装HP工具: yum install hpssacli 1 查看控制器状态 raid卡型号等hpssacli ctrl all show status 2 查看硬盘类型.大小 raid级别.状 ...

  3. mysql刷新mysql-bin

    #!/bin/bash set -x #echo `date`,"binlog" >> /opt/scripts/fl.sh.log /opt/app/mysql/bi ...

  4. quick-cocos2dx-2.2.4环境搭建

    1.Quick-Coco2d-x介绍 Quick-Coco2d-x是Cocos2d-x在Lua上的增强和扩展版本,廖宇雷廖大觉得官方Cocos2d-x的Lua版本不是太好用,于是便在官方Lua版本的基 ...

  5. vue2.0实现图片加载失败默认显示图片

    <div class="bg"> <img :src="goods.phoneFloorAd.resUrl" :onerror="e ...

  6. 解决:ubuntu 里文件夹带锁

    sudo chown -R <user-name> <folder-name> /* 其中-R的意思是recursive,你懂的,chown --help可以查看帮助信息 */ ...

  7. Makefile学习之路6——让编译环境更加有序

    在大多项目中都会合理设计目录结构来提高维护性,在编译一个项目时会产生大量中间文件,如果中间文件直接和源文件放在一起,就显得杂乱而不利于维护.在为现在这个complicated项目编写makefile之 ...

  8. dp之多重背包hdu1059

    题意:价值为1,2,3,4,5,6. 分别有n[1],n[2],n[3],n[4],n[5],n[6]个.求能否找到满足价值刚好是所有的一半的方案. 思路:简单的多重背包,我建议多重背包都用二进制拆分 ...

  9. python学习笔记(3)--IDLE双击运行后暂停

    本来想找一个python的IDE什么的,用过pycharm,vs装python插件,软件都太大了,习惯了用sublime写html,js这样的简直受不了. 一直坚持用着python自带的IDLE,不过 ...

  10. [接口]mmc/eMMC/SD-card

    转自:http://blog.csdn.net/yazhouren/article/details/46643321 MMC(multiMedia card)是一种通信协议,支持两种模式SPI和MMC ...