【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1368 Solved: 832Description
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
D=(A*B-C)*A^T最大。其中A^T为A的转置。输出DInput
第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。Output
输出最大的D
Sample Input
3
1 2 1
3 1 0
1 2 3
2 3 7Sample Output
2HINT
1<=N<=500
Source
【分析】
化一下式子得到$D=\sum_{i=1}^{n}\sum_{j=1}^{n}A_i * A_j * B_{ij} - \sum_{i=1}^{n} A_i * C_i$
网络流建图。
S→Dot(i,j),流量为bij
Dot(i,j)→i 以及 Dot(i,j)→j,流量为 ∞
连边 i→T,流量为ci
设最小割为$x$,那么答案就是
$\sum_{i=1}^{n}\sum_{j=1}^{n} B_{ij} - x$
经典模型??不能弄成类似二分图那样的模型就只能这样了,虽然点很多,但是图比较简单应该还是很快吧?
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 510
#define INF 0xfffffff int mymin(int x,int y) {return x<y?x:y;} struct node
{
int x,y,f,next,o;
}t[Maxn*Maxn*];
int first[Maxn*Maxn*],len; void ins(int x,int y,int f)
{
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int ans;
int dis[Maxn*Maxn*],st,ed;
queue<int > q;
bool bfs()
{
memset(dis,-,sizeof(dis));
while(!q.empty()) q.pop();
dis[st]=;q.push(st);
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]==-) return ;
return ;
} int ffind(int x,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
}
if(now==flow) break;
}
if(now==) dis[x]=;
return now;
} void max_flow()
{
while(bfs())
{
ans-=ffind(st,INF);
}
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
scanf("%d",&n);
st=n*n+n+,ed=st+;
len=;
memset(first,,sizeof(first));
ans=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
ins(st,n*(i-)+j,x);
ans+=x;
ins(n*(i-)+j,n*n+i,INF);
ins(n*(i-)+j,n*n+j,INF);
}
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
ins(n*n+i,ed,x);
}
max_flow();
printf("%d\n",ans);
return ;
}
2017-03-24 08:40:32
【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- [TJOI2015]线性代数(最小割)
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- BZOJ 3996 线性代数 最小割
题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- [BZOJ 3144] [Hnoi2013] 切糕 【最小割】
题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
- BZOJ 2007 海拔(平面图最小割-最短路)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...
随机推荐
- rxjs自定义operator
rxjs自定义operator
- opencv 高级拼接函数Stitcher
Stitcher https://docs.opencv.org/trunk/d8/d19/tutorial_stitcher.html http://blog.csdn.net/czl389/art ...
- 【LibreOJ】#6257. 「CodePlus 2017 12 月赛」可做题2
[题意]数列满足an=an-1+an-2,n>=3.现在a1=i,a2=[l,r],要求满足ak%p=m的整数a2有多少个.10^18. [算法]数论(扩欧)+矩阵快速幂 [题解]定义fib(i ...
- python学习笔记(十三)之lambda表达式
lambda表达式: 用法 lambda x : 2 * x + 1 其中:前面是参数,后面是返回值. >>> def ds(x): ... return 2 * x + 1 ... ...
- 根据 plist 还原 图片
1. python 环境自己配置(支持windows Mac ) 2. 把所有的 plist 和 大图片放到一个目录下 3.如果添加了 系统环境变量 就直接双击运行脚本,如果没有设置,把脚本拽到DO ...
- 前端bootstrap框架禁用响应式的方法
在Bootstrap中极其重要的一个技术内容便是响应式布局了,一次编码针对不同设备终端的强大能力使得响应式技术愈发流行. 不过正所谓“萝卜青菜各有所爱”,如果你想要使用Bootstrap开发自己的项目 ...
- Double类型的数向上取整和向下取整
- VueJS $refs 在 ElementUI 中遇到的问题
表单验证的时候 $refs 拿不到 暂且是用 $nextTick 解决,具体原因有待研究 假入在 created 中注册时间来验证 validate,那就放在mounted中 或者...注册了 ev ...
- kvm命令参数记录
/usr/libexec/qemu-kvm -cpu host -m 1024 -enable-kvm -drive file=/var/lib/libvirt/images/zxc_linux1.i ...
- leetcode 之Median of Two Sorted Arrays(五)
找两个排好序的数组的中间值,实际上可以扩展为寻找第k大的数组值. 参考下面的思路,非常的清晰: 代码: double findMedianofTwoSortArrays(int A[], int B[ ...