【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1368 Solved: 832Description
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
D=(A*B-C)*A^T最大。其中A^T为A的转置。输出DInput
第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。Output
输出最大的D
Sample Input
3
1 2 1
3 1 0
1 2 3
2 3 7Sample Output
2HINT
1<=N<=500
Source
【分析】
化一下式子得到$D=\sum_{i=1}^{n}\sum_{j=1}^{n}A_i * A_j * B_{ij} - \sum_{i=1}^{n} A_i * C_i$
网络流建图。
S→Dot(i,j),流量为bij
Dot(i,j)→i 以及 Dot(i,j)→j,流量为 ∞
连边 i→T,流量为ci
设最小割为$x$,那么答案就是
$\sum_{i=1}^{n}\sum_{j=1}^{n} B_{ij} - x$
经典模型??不能弄成类似二分图那样的模型就只能这样了,虽然点很多,但是图比较简单应该还是很快吧?
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 510
#define INF 0xfffffff int mymin(int x,int y) {return x<y?x:y;} struct node
{
int x,y,f,next,o;
}t[Maxn*Maxn*];
int first[Maxn*Maxn*],len; void ins(int x,int y,int f)
{
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int ans;
int dis[Maxn*Maxn*],st,ed;
queue<int > q;
bool bfs()
{
memset(dis,-,sizeof(dis));
while(!q.empty()) q.pop();
dis[st]=;q.push(st);
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]==-) return ;
return ;
} int ffind(int x,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
}
if(now==flow) break;
}
if(now==) dis[x]=;
return now;
} void max_flow()
{
while(bfs())
{
ans-=ffind(st,INF);
}
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
scanf("%d",&n);
st=n*n+n+,ed=st+;
len=;
memset(first,,sizeof(first));
ans=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
ins(st,n*(i-)+j,x);
ans+=x;
ins(n*(i-)+j,n*n+i,INF);
ins(n*(i-)+j,n*n+j,INF);
}
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
ins(n*n+i,ed,x);
}
max_flow();
printf("%d\n",ans);
return ;
}
2017-03-24 08:40:32
【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- [TJOI2015]线性代数(最小割)
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- BZOJ 3996 线性代数 最小割
题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- [BZOJ 3144] [Hnoi2013] 切糕 【最小割】
题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
- BZOJ 2007 海拔(平面图最小割-最短路)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...
随机推荐
- 使用TortoiseGit时如何实现SSH免密码登录
1. Git配置 连接GIT服务器使用的是SSH连接,因此无密码登录,需要使用公钥和私钥. 1) 生成公钥/私钥 在Git Shell中输入ssh-keygen命令,直接回车使用默认 ...
- 简易版jquery
最近写了一个简易版的jquery github地址:https://github.com/jiangzhenfei/Easy-Jquery 完成的方法: 1.$('#id') 2.extend扩展 ...
- python基础===对字符串进行左右中对齐
例如,有一个字典如下: >>> dic = { "name": "botoo", "url": "http:// ...
- juey点击tr选中里面的radio
//点击一行选中银行卡 $("tr").bind("click",function(){ $("input:radio").attr(&qu ...
- Windows上安装Jekyll
Jekyll是什么 jekyll是一个简单的免费的Blog生成工具,是一个静态站点生成器, 它会根据网页源码生成静态文件.它提供了模板.变量.插件等功能,所以实际上可以用来编写整个网站.也可使用基于j ...
- centos7安装ssh服务
1.查看是否安装了相关软件: rpm -qa|grep -E "openssh" 显示结果含有以下三个软件,则表示已经安装,否则需要安装缺失的软件 openssh-ldap-6.6 ...
- C# 下载文件的四种方法
C# 文件下载四方法 - CSDN论坛 - CSDN.NET using System; using System.Data; using System.Configuration; using Sy ...
- java基础8 构造函数和构造代码块
一.构造函数 1 构造函数的作用 给对应的对象进行初始化. 2 构造函数的格式 修饰符 函数名(形式参数){ //函数名就是类名 函数体 } 举例说明: class Perosn{ private i ...
- JDK动态代理小例子
一个小汽车,有一个跑run()的方法,我们想使用jdk动态代理使小汽车执行run之前 加点油,run之后洗车. 有四个类,接口Car(小汽车)Kayan(具体实现类(卡宴)) CarProxy(汽车的 ...
- MyBatis3-与Spring MVC 4集成
继前一篇的例子http://www.cnblogs.com/EasonJim/p/7052388.html,已经集成了Spring框架,现在将改造成Spring MVC的项目,并实现如下功能: 1.不 ...