【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1368 Solved: 832Description
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
D=(A*B-C)*A^T最大。其中A^T为A的转置。输出DInput
第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。Output
输出最大的D
Sample Input
3
1 2 1
3 1 0
1 2 3
2 3 7Sample Output
2HINT
1<=N<=500
Source
【分析】
化一下式子得到$D=\sum_{i=1}^{n}\sum_{j=1}^{n}A_i * A_j * B_{ij} - \sum_{i=1}^{n} A_i * C_i$
网络流建图。
S→Dot(i,j),流量为bij
Dot(i,j)→i 以及 Dot(i,j)→j,流量为 ∞
连边 i→T,流量为ci
设最小割为$x$,那么答案就是
$\sum_{i=1}^{n}\sum_{j=1}^{n} B_{ij} - x$
经典模型??不能弄成类似二分图那样的模型就只能这样了,虽然点很多,但是图比较简单应该还是很快吧?
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 510
#define INF 0xfffffff int mymin(int x,int y) {return x<y?x:y;} struct node
{
int x,y,f,next,o;
}t[Maxn*Maxn*];
int first[Maxn*Maxn*],len; void ins(int x,int y,int f)
{
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int ans;
int dis[Maxn*Maxn*],st,ed;
queue<int > q;
bool bfs()
{
memset(dis,-,sizeof(dis));
while(!q.empty()) q.pop();
dis[st]=;q.push(st);
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]==-) return ;
return ;
} int ffind(int x,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
}
if(now==flow) break;
}
if(now==) dis[x]=;
return now;
} void max_flow()
{
while(bfs())
{
ans-=ffind(st,INF);
}
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
scanf("%d",&n);
st=n*n+n+,ed=st+;
len=;
memset(first,,sizeof(first));
ans=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
ins(st,n*(i-)+j,x);
ans+=x;
ins(n*(i-)+j,n*n+i,INF);
ins(n*(i-)+j,n*n+j,INF);
}
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
ins(n*n+i,ed,x);
}
max_flow();
printf("%d\n",ans);
return ;
}
2017-03-24 08:40:32
【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- [TJOI2015]线性代数(最小割)
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- BZOJ 3996 线性代数 最小割
题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- [BZOJ 3144] [Hnoi2013] 切糕 【最小割】
题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
- BZOJ 2007 海拔(平面图最小割-最短路)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...
随机推荐
- (4.2)基于LingPipe的文本基本极性分析【demo】
酒店评论情感分析系统(四)—— 基于LingPipe的文本基本极性分析[demo] (Positive (favorable) vs. Negative (unfavorable)) 这篇文章为Lin ...
- jquery 事件对象属性小结
使用事件自然少不了事件对象. 因为不同浏览器之间事件对象的获取, 以及事件对象的属性都有差异, 导致我们很难跨浏览器使用事件对象. jQuery中统一了事件对象, 当绑定事件处理函数时, 会将jQue ...
- Lua的各种资源1
Libraries And Bindings LuaDirectory > LuaAddons > LibrariesAndBindings This is a list of l ...
- [ JS 进阶 ] 闭包,作用域链,垃圾回收,内存泄露
原网址:https://segmentfault.com/a/1190000002778015 1. 什么是闭包? 来看一些关于闭包的定义: 闭包是指有权访问另一个函数作用域中变量的函数 --< ...
- NYOJ 257 郁闷的C小加(一) (字符串处理)
题目链接 描述 我们熟悉的表达式如a+b.a+b(c+d)等都属于中缀表达式.中缀表达式就是(对于双目运算符来说)操作符在两个操作数中间:num1 operand num2.同理,后缀表达式就是操作符 ...
- Hibernate总结之Hello,World
1. 引入相关maven依赖: <dependency> <groupId>org.hibernate</groupId> <artifactId>hi ...
- three.js_sence(场景)
1,THREE.Scene 的作用 (1)THREE.Scene 对象是所有不同对象的容器,也就是说该对象保存所有物体.光源.摄像机以及渲染所需的其他对象. (2)THREE.Scene 对象又是被称 ...
- gunicorn之日志详细配置
gunicorn的日志配置 gunicorn的日志配置相关的常用参数有4个,分别是accesslog,access_log_format,errorlog,loglevel. accesslog:用户 ...
- [004] last_k_node
[Description] find the k-th node from the last node of single linked list. e.g. Linked-list: 1-2-3-4 ...
- adb_usb.ini在adb找不到设备时
不能连接不上adb,如下方法解决,步骤描述不愿意看的话,直接使用本文最下面的批处理命令,方法copy粘贴到新建的bat文件里运行,或者直接粘贴到dos窗口运行. 1. 使用androidsdk目录中的 ...