本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

题目链接:UOJ34

正解:$NTT$

解题报告:

  $NTT$是用来解决需要取模的一类多项式乘法问题。

  如果要用$NTT$的话,对模数$p$是有要求的:模数要能写成$c*2^k+1$的形式,而且$2^k>n$;

  同时,模数必须要有原根,原根$g$满足的性质是:$g^1,g^2…g^{p-1}$是在模$p$意义下的一个$1$到$p-1$的一个排列。

  回忆一下$FFT$的步骤,中间需要用到单位复数根$w_n$来实现点值表示法,在这里可以直接用$g$的次幂来代替单位复数根,即令$g_n=w_n$,那么$g_n$$=$$g^{\frac{p-1}{n}}$。

  其余的做法与$FFT$完全类似。

  只是需要注意的是,$FFT$最后插值回去的时候,是取了个反,也就是加了个负号。

  把单位复数根画出来,不难发现,是对称的,取了负号之后其实也就是颠倒了顺序,所以$NTT$的最后需要$reverse$一下。

  注意$0$不用$reverse$,可以认为$0$就是对称轴所以无需考虑。

  常用$NTT$模数:

  $998244353$$=$$119*2^{23}+1$,原根为$3$;

  $1004535809$$=$$479*2^{21}+1$,原根为$3$。

  $4179340454199820288$$=$$29*2^{57}+1$,原根为$3$。

  模板保存:

//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <bitset>
using namespace std;
typedef long long LL;
const int mod = 998244353;//119*2^23+1
const int MAXN = 300011;
const int G = 3;
int n,m,L,R[MAXN],a[MAXN],b[MAXN]; inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline LL fast_pow(LL x,LL y){
LL r=1;
while(y>0) {
if(y&1) r*=x,r%=mod;
x*=x; x%=mod;
y>>=1;
}
return r;
} inline void NTT(int *a,int n,int f){
for(int i=0;i<n;i++) if(i<R[i]) swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1) {
LL gn=fast_pow(G,(mod-1)/(i<<1)),x,t;
for(int j=0;j<n;j+=(i<<1)) {
LL g=1;
for(int k=0;k<i;k++,g=1LL*g*gn%mod) {
x=a[j+k]; t=1LL*a[j+i+k]*g%mod;
a[j+k]=(x+t)%mod;
a[j+i+k]=(x-t+mod)%mod;
}
}
}
if(f==1) return ;
reverse(a+1,a+n); int ni=fast_pow(n,mod-2);
for(int i=0;i<=n;i++) a[i]=1LL*a[i]*ni%mod;
} inline void work(){
n=getint(); m=getint();
for(int i=0;i<=n;i++) a[i]=getint();
for(int i=0;i<=m;i++) b[i]=getint();
m+=n; for(n=1;n<=m;n<<=1) L++;
for(int i=0;i<n;i++) R[i]=(R[i>>1]>>1) | ((i&1) << (L-1));
NTT(a,n,1); NTT(b,n,1);
for(int i=0;i<=n;i++) a[i]=1LL*a[i]*b[i]%mod;
NTT(a,n,-1);
for(int i=0;i<=m;i++) printf("%d ",a[i]);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("NTT.in","r",stdin);
freopen("NTT.out","w",stdout);
#endif
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。

  

UOJ34 多项式乘法(NTT)的更多相关文章

  1. 洛谷P3803 【模板】多项式乘法 [NTT]

    题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...

  2. UOJ#34. 多项式乘法(NTT)

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  3. UOJ34 多项式乘法

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  4. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  5. UOJ 34 多项式乘法 ——NTT

    [题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...

  6. 【模板】多项式乘法 NTT

    相对来说是封装好的,可以当模板来用. #include <bits/stdc++.h> #define maxn 5000000 #define G 3 #define ll long l ...

  7. UOJ34 多项式乘法(非递归版)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  8. 【Uoj34】多项式乘法(NTT,FFT)

    [Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...

  9. 【uoj34】 多项式乘法

    http://uoj.ac/problem/34 (题目链接) 题意 求两个多项式的乘积 Solution 挂个FFT板子. 细节 FFT因为要满足$n$是$2$的幂,所以注意数组大小. 代码 // ...

随机推荐

  1. 【云安全与同态加密_调研分析(5)】云安全标准现状与统计——By Me

  2. 前端 javascript 数据类型

    JavaScript 中的数据类型分为原始类型和对象类型: 原始类型 数字 字符串 布尔值 对象类型 数组 “字典” ...

  3. TensorFlow学习笔记(二)-- MNIST机器学习入门程序学习

    此程序被称为TF的 Hello World,19行代码,给人感觉很简单.第一遍看的时候,不到半个小时,就把程序看完了.感觉有点囫囵吞枣的意思,没理解透彻.现在回过头来看,感觉还可以从中学到更多东西. ...

  4. 安装pip环境以及pip常用命令使用

    1.去到Python的官网下载pip包,下载地址是:https://pypi.python.org/pypi/pip#downloads 2.下载完成之后,解压到一个文件夹,用CMD控制台进入解压目录 ...

  5. SpringMVC的其他功能使用

    一.SpringMVC支持在控制器的业务方法中写入参数作为传递过来的变量 @Controller @RequestMapping(value="/kaiye") public cl ...

  6. STL: fill,fill_n,generate,generate_n

    fill Assigns the same new value to every element in a specified range. template<class ForwardIter ...

  7. appium ios 自动化测试

    iOS自动化测试:Appium 从入门到实践https://www.jianshu.com/p/43f858180557appium自动化测试iOS Demohttps://www.jianshu.c ...

  8. Objective-C中的alloc和init问题

    从开始学的NSString *name=[[NSString alloc] init] 起,仅仅这句话是分配内存空间,一直在用,从来没考虑过它的内部是怎么实现的.今天无意中看到了这一句代码: NSSt ...

  9. MySQL,sqlalchemy

    Mariadb 数据库是一堆表的集合 主键 外键 索引 安装: Centos7 [root@host]# mysqladmin -u root password "new_password& ...

  10. Leetcode 235

    思路1:对于一棵二叉排序树 1.如果当前节点的值小于p,q的值,那么LCA一定在root的右边: 2.如果当前节点的值大于p,q的值,那么LCA一定在root的左边: 3.如果当前节点的值在p,q的值 ...