luoguP3978 [TJOI2015]概率论 卡特兰数

考虑分别求出$f_n, g_n$表示$n$个点的有根二叉树的数量和$n$个点的所有情况下有根二叉树的叶子结点的总数
有$f_n = \sum_{k} f_k * f_{n - 1 - k}$,因此有$f_n = C_n$,其中$C_n$为卡特兰数
有$g_n = \sum_{k} g_k * f_{n - 1 - k} + g_{n - 1 - k} * f_k$
通过打表,可以发现$g_n = n * C_{n - 1}$,可以用归纳法证明
因此答案为$\frac{g_n}{f_n} = \frac{n * C_{n - 1}}{C_n} = \frac{n * (n + 1)}{4 * n - 2}$
复杂度$O(1)$
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define de long double de n; int main() {
cin >> n;
de p = (de)n * (de)(n + ) / (de)( * n - 2.0);
printf("%.13Lf", p);
return ;
}
luoguP3978 [TJOI2015]概率论 卡特兰数的更多相关文章
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- [TJOI2015]概率论[卡特兰数]
题意 \(n\) 个节点二叉树的叶子节点的期望个数. \(n\leq 10^9\) . 分析 实际询问可以转化为 \(n\) 个点的不同形态的二叉树的叶子节点总数. 定义 \(f_n\) 表示 \(n ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- [TJOI2015] 概率论 - Catalan数
一棵随机生成的 \(n\) 个结点的有根二叉树(所有互相不同构的形态等概率出现)的叶子节点数的期望.\(n \leq 10^9\) Solution \(n\) 个点的二叉树个数即 Catalan 数 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
- 【BZOJ4001】[TJOI2015] 概率论(卡特兰数)
点此看题面 大致题意: 问你一棵\(n\)个节点的有根二叉树叶节点的期望个数. 大致思路 看到期望,比较显然可以想到设\(num_i\)为\(i\)个节点的二叉树个数,\(tot_i\)为所有\(i\ ...
- [luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】
题目描述 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢? 判断两棵树是否同构 ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
随机推荐
- HDU 3790 最短生成树 (最短路)
题目链接 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的. ...
- python3爬虫.4.下载煎蛋网妹子图
开始我学习爬虫的目标 ----> 煎蛋网 通过设置User-Agent获取网页,发现本该是图片链接的地方被一个js函数代替了 于是全局搜索到该函数 function jandan_load_im ...
- virtualenv搭建虚拟环境
最近因为项目需要,要在CentOS 7 上搭建一套开发环境,虽说Python的背后有着庞大的开源社区支持,但是有一个缺点就是每个包的质量都参差不齐,如果我们在工作服务器上去测试安装每个包,就会造成整个 ...
- tomcat和weblogic的区别
Tomcat是Apache基金会提供的Servlet容器,它支持JSP, Servlet和JDBC等J2EE关键技术,所以用户可以用Tomcat开发基于数据库,Servlet和JSP页面的Web应用, ...
- git常用命令速查表【转】
- Android快速入门(转自 农民伯伯: http://www.cnblogs.com/over140/)
前言 这是前段时间用于公司Android入门培训的资料,学习Android三周时间收集整理的,时间仓促,希望能对像我这样还没入门就直接上项目的人一点帮助 :) 声明 欢迎转载,但请保留文章原始出处: ...
- caffe Python API 之Model训练
# 训练设置 # 使用GPU caffe.set_device(gpu_id) # 若不设置,默认为0 caffe.set_mode_gpu() # 使用CPU caffe.set_mode_cpu( ...
- 教你如何修改FireFox打开新标签页(NewTab Page)的行列数
FireFox的打开新建标签页(即NewTab Page)默认只能显示3x3个网站缩略图,这9个自定义的网站,非常方便快捷,什么hao123的弱爆了,本人从未用过此类导航网站,曾经用过的也只是abou ...
- C语言调用正则表达式
标准的C和C++都不支持正则表达式,但有一些函数库可以辅助C/C++程序员完成这一功能,其中最著名的当数Philip Hazel的Perl-Compatible Regular Expression库 ...
- intellij idea 远程tomcat 调试
由于在服务器上远程调试风险较高,所以万不得已的情况下 不要这样做.可以本地调试好 再上传到服务器上. 1.关闭防火墙 启动Firewalld,及开机自启. # systemctl start fir ...