【矩阵快速幂优化DP】【校内测试】
实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻。
构建矩阵什么的还是很简单滴,主要就是练一练手。
(还有就是水一水blog!换个字体,换个心情!
(快速乘是在模数很大时要用,避免超long long
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mod 7777777 LL k, n, dp[]; struct Matrix {
LL w[][];
} base; struct Node {
LL w[][];
} pool; Matrix Cheng(Matrix a, Matrix b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
ans.w[i][j] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
for(int p = ; p <= k; p ++)
ans.w[i][j] = (ans.w[i][j] + a.w[i][p] * b.w[p][j] % mod) % mod;
return ans;
} Matrix mpow(Matrix a, LL b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
if(i == j) ans.w[i][j] = ;
else ans.w[i][j] = ;
for(; b; b >>= , a = Cheng(a, a))
if(b & ) ans = Cheng(ans, a);
return ans;
} int main() {
freopen("fyfy.in", "r", stdin);
freopen("fyfy.out", "w", stdout);
scanf("%lld%lld", &k, &n);
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++) base.w[i][j] = ;
for(int i = ; i <= k; i ++) base.w[][i] = ;
for(int i = ; i <= k; i ++) base.w[i][i-] = ;
dp[] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= i; j ++)
dp[i] = (dp[i] + dp[i-j]) % mod;
for(int i = ; i <= k; i ++) pool.w[i][] = dp[k-i+];
base = mpow(base, n-k);
LL ans = ;
for(int i = ; i <= k; i ++) ans = (ans + base.w[][i] * pool.w[i][] % mod) % mod;
printf("%lld", ans);
return ;
}
【矩阵快速幂优化DP】【校内测试】的更多相关文章
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...
- 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)
传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...
- 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
- bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...
- 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)
传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...
- 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)
传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...
随机推荐
- Python自定义web框架、Jinja2
WSGI(Web Server Gateway Interface)是一种规范,它定义了使用python编写的web app与web server之间接口格式,实现web app与web server ...
- 大聊Python----装饰器
什么是装饰器? 装饰器其实和函数没啥区别,都是用def去定义的,其本质就是函数,而功能就是装饰其他的函数,说白了就是为其他函数提供附加功能 装饰器有什么作用? 比如你是一个公司的员工,你所写的程序里有 ...
- 大数加法(SDUT“斐波那契”串)4335
题目链接:https://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/2697/pid/4335.ht ...
- spring-boot 更换依赖版本
创建Spring Boot操作步骤如下: 在File菜单里面选择 New > Project,然后选择Spring Initializr 更换版本 或 pom spring-boot-start ...
- android的wake_lock介绍
Wake Lock是一种锁的机制, 只要有人拿着这个锁,系统就无法进入休眠, 可以被用户态程序和内核获得. 这个锁可以是有超时的或者是没有超时的, 超时的锁会在时间过去以后自动解锁. 如果没有锁了或者 ...
- C基础 time.h 简单思路扩展
前言 - time 简单需求 时间业务相关代码. 基本属于框架的最底层. 涉及的变动都很小. 以前参与游戏研发时候, 这方面需求不少, 各种被策划花式吊打. 转行开发互联网服务之后很少遇到这方面需求. ...
- 设计模式之笔记--外观模式(Facade)
外观模式(Facade) 定义 外观模式(Facade),为子系统中的一组接口提供一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 类图 描述 Facade:外观类,外观 ...
- RestTemplate OR Spring Cloud Feign 上传文件
SpringBoot,通过RestTemplate 或者 Spring Cloud Feign,上传文件(支持多文件上传),服务端接口是MultipartFile接收. 将文件的字节流,放入ByteA ...
- RF和adaboost
通过对所有的决策树进行加总来预测新的数据(在分类时采用多数投票,在回归时采用平均).
- 记一次测试环境下PXC集群问题《经验总结》
1.问题描述 当PXC集群节点全部宕机的,导致集群几点启动失败.报错导致无法启动 [ERROR] WSREP: It may not be safe to boo ...