【矩阵快速幂优化DP】【校内测试】

实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻。
构建矩阵什么的还是很简单滴,主要就是练一练手。
(还有就是水一水blog!换个字体,换个心情!
(快速乘是在模数很大时要用,避免超long long
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mod 7777777 LL k, n, dp[]; struct Matrix {
LL w[][];
} base; struct Node {
LL w[][];
} pool; Matrix Cheng(Matrix a, Matrix b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
ans.w[i][j] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
for(int p = ; p <= k; p ++)
ans.w[i][j] = (ans.w[i][j] + a.w[i][p] * b.w[p][j] % mod) % mod;
return ans;
} Matrix mpow(Matrix a, LL b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
if(i == j) ans.w[i][j] = ;
else ans.w[i][j] = ;
for(; b; b >>= , a = Cheng(a, a))
if(b & ) ans = Cheng(ans, a);
return ans;
} int main() {
freopen("fyfy.in", "r", stdin);
freopen("fyfy.out", "w", stdout);
scanf("%lld%lld", &k, &n);
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++) base.w[i][j] = ;
for(int i = ; i <= k; i ++) base.w[][i] = ;
for(int i = ; i <= k; i ++) base.w[i][i-] = ;
dp[] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= i; j ++)
dp[i] = (dp[i] + dp[i-j]) % mod;
for(int i = ; i <= k; i ++) pool.w[i][] = dp[k-i+];
base = mpow(base, n-k);
LL ans = ;
for(int i = ; i <= k; i ++) ans = (ans + base.w[][i] * pool.w[i][] % mod) % mod;
printf("%lld", ans);
return ;
}
【矩阵快速幂优化DP】【校内测试】的更多相关文章
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...
- 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)
传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...
- 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
- bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...
- 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)
传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...
- 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)
传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...
随机推荐
- zedboard学习记录.1.纯PL流水灯
环境:vivado 217.4 开发板: zedboard ver.d xc7z020clg484-1 1.打开Vivado新建一个RTL工程. 2.add source->add/create ...
- docker 镜像导入和导出
使用 docker commit 即可把这个容器变为一个镜像 docker commit 8d93082a9ce1 ubuntu:myubuntu 这时候 docker 容器会被创建为一个新的 Ubu ...
- usb_submit_urb 解释的够够的
/** * usb_submit_urb - issue an asynchronous transfer request for an endpoint * @urb: pointer to the ...
- 64_o2
openrdf-sesame-queryrender-2.8.10-2.fc26.noarch..> 11-Feb-2017 18:38 52014 openrdf-sesame-queryre ...
- Mysql存储之ORM框架SQLAlchemy(一)
上一篇我们说了mysql存储的原生语句方式,因为原生语句每次写都比较的复杂,所以这里我们说一种引用实体类的方式来操作数据库. 什么是ORM ORM技术:Object-Relational Mappin ...
- NEERC2012
NEERC2012 A - Addictive Bubbles 题目描述:有一个\(n \times m\)的棋盘,还有不同颜色的棋子若干个,每次可以消去一个同种颜色的联通块,得到的分数为联通块中的棋 ...
- python 异常知识点
raise from python 在3.0 之后引入了raise from 表达式: raise exception from otherexception 当使用该语法时,第二个表达式指定了另一个 ...
- AspNet Core 发布到Linux系统和发布IIS 注意项
AspNet Core 发布到Linux系统和发布IIS 注意项 1.发布时需要注意的 2.Windows Server 2012 api-ms-win-crt-runtime-l1-1-0.dll ...
- MySql学习笔记——存储函数
在学习完存储过程后,今天主要回顾一下mysql中的存储函数的知识. 函数与存储过程的区别 首先,存储函数也是过程式对象之一,与存储过程相似.它们都是由SQL和过程式语句组成的代码片断,并且可以从应用程 ...
- PyCharm中 ImportError: No module named tensorflow
安装完 tensorflow 后在 PyCharm 中导入时显示找不到,可设置如下: PyCharm 中依次打开 File -> Settings -> Project:PycharmPr ...