实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻。

构建矩阵什么的还是很简单滴,主要就是练一练手。

(还有就是水一水blog!换个字体,换个心情!

(快速乘是在模数很大时要用,避免超long long

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mod 7777777 LL k, n, dp[]; struct Matrix {
LL w[][];
} base; struct Node {
LL w[][];
} pool; Matrix Cheng(Matrix a, Matrix b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
ans.w[i][j] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
for(int p = ; p <= k; p ++)
ans.w[i][j] = (ans.w[i][j] + a.w[i][p] * b.w[p][j] % mod) % mod;
return ans;
} Matrix mpow(Matrix a, LL b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
if(i == j) ans.w[i][j] = ;
else ans.w[i][j] = ;
for(; b; b >>= , a = Cheng(a, a))
if(b & ) ans = Cheng(ans, a);
return ans;
} int main() {
freopen("fyfy.in", "r", stdin);
freopen("fyfy.out", "w", stdout);
scanf("%lld%lld", &k, &n);
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++) base.w[i][j] = ;
for(int i = ; i <= k; i ++) base.w[][i] = ;
for(int i = ; i <= k; i ++) base.w[i][i-] = ;
dp[] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= i; j ++)
dp[i] = (dp[i] + dp[i-j]) % mod;
for(int i = ; i <= k; i ++) pool.w[i][] = dp[k-i+];
base = mpow(base, n-k);
LL ans = ;
for(int i = ; i <= k; i ++) ans = (ans + base.w[][i] * pool.w[i][] % mod) % mod;
printf("%lld", ans);
return ;
}

【矩阵快速幂优化DP】【校内测试】的更多相关文章

  1. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  2. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  3. 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)

    传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...

  4. 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)

    传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...

  5. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  6. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  7. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

  8. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

  9. 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)

    传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...

随机推荐

  1. Travelling(HDU3001+状压dp+三进制+最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3001 题目: 题意:n个城市,m条边,每条边都有一个权值,问你经过所有的城市且每条边通过次数不超过两次 ...

  2. 深入理解Spring系列之十二:@Transactional是如何工作的

    转载 https://mp.weixin.qq.com/s/ZwhkUQF1Nun9pNrFI-3a6w 首先从说起.配置了,就必定有对应的标签解析器类,查看NamespaceHandler接口的实现 ...

  3. 设计模式之笔记--外观模式(Facade)

    外观模式(Facade) 定义 外观模式(Facade),为子系统中的一组接口提供一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 类图 描述 Facade:外观类,外观 ...

  4. Android 开发笔记(一) 按钮事件调用Activity

    UI创建按钮及事件 Button mEmailSignInButton = (Button) findViewById(R.id.email_sign_in_button);mEmailSignInB ...

  5. No manual entry for pthread_mutex_init .

    $manpthread_mutex_init No manual entryfor pthread_mutex_init 解决方案: $sudo apt-get install manpages-po ...

  6. mui app页面刷新问题 plus.webview.getWebviewById("").reload()

    /** * 放回指定页面,并且刷新指定页面 * @param {Object} pageId 指定页面ID */ mui.app_refresh=function(pageId){ if(!mui.i ...

  7. LAMP结合discuz论坛的配置

    一.安装discuz ---->//download discuz; [root@localhost ~]# mkdir /data/www [root@localhost ~]# cd /da ...

  8. 在ubuntu 上安装sublime

    1.在sublime官网上下载sublime 2.将下载包解压到指定位置(自己决定) 3.进入解压文件里面 4.鼠标选中sublime_text,点击右键运行. 5.锁在启动器.

  9. 6.Python3标准库--数学运算

    ''' 作为一种通用的变成语言,Python经常用来解决数学问题.它包含一些用于管理整数和浮点数的内置类型,这很适合完成一般应用中可能出现的基本数学运算. 而标准库中包含一些用于满足更高级需求的模块. ...

  10. 【转载】python-协程

    转载自:廖雪峰的官方网站 协程,又称微线程,纤程.英文名Coroutine. 协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用. 子程序,或者称为函数,在所有语言中都是层 ...