之前解析MQTT协议时,需要做一个等分字节流的操作,其中用到了yield关键字,如下:

def get_var_length(hstring):
m = 1
v = 0
for element in chunks(hstring, 2):
temp = int(element, 16)
print(temp)
v += (temp & 127) * m
m *= 128
if 0 != (temp & 128):
continue
else:
if m > 128*128*128:
break
print("%d, 0x%x" % (v, v)) def chunks(array, n):
for i in range(0, len(array), n):
yield array[i:i+n]

搜索了下yield用法,发现这篇文章介绍的很清晰,转载留档自查。文章转自:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数
def fab(max):
   n, a, b = 0, 0, 1
  while n < max:
    print b
    a, b = b,a + b
    n = n + 1

执行 fab(5),我们可以得到如下输出:

>>> fab(5)

1
1
2
3
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版
def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L

可以使用如下方式打印出 fab 函数返回的 List:

>>> for n in fab(5):

  ... print n ...
1
1
2
3
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本
class Fab(object):
def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1 def __iter__(self):
return self def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

>>> for n in Fab(5):

   ... print n ...
1
1
2
3
5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

def fab(max):

  n, a, b = 0, 0, 1
  while n < max:
    yield b # print b
    a, b = b, a + b
    n = n + 1
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

>>> for n in fab(5):

  ... print n ...
1
1
2
3
5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

>>> f = fab(5)

>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

>>> from inspect import isgeneratorfunction

>>> isgeneratorfunction(fab) True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

>>> import types

>>> isinstance(fab, types.GeneratorType) False
>>> isinstance(fab(5), types.GeneratorType) True

fab 是无法迭代的,而 fab(5) 是可迭代的:

>>> from collections import Iterable

>>> isinstance(fab, Iterable) False
>>> isinstance(fab(5), Iterable) True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

>>> f1 = fab(3)

>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1 

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

def read_file(fpath):

   BLOCK_SIZE = 1024
  with open(fpath, 'rb') as f:
    while True:
      block = f.read(BLOCK_SIZE)
      if block:
        yield block
      else:
        return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

Python yield 的基本概念和用法的更多相关文章

  1. [转]Python yield 使用浅析

    您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield ...

  2. python "yield"(转载)

    转载地址:http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ 您可能听说过,带有 yield 的函数在 Python ...

  3. 【转】Python yield 使用浅析

    转载地址: www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初学 Python 的开发者经 ...

  4. Python yield 使用浅析(转)

    Python yield 使用浅析 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到 ...

  5. Python yield使用

    https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ 您可能听说过,带有 yield 的函数在 Python 中被称 ...

  6. Python yield 使用

    老是看到好的文章,不由自主的收集过来. 原文链接:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ 廖大写的, ...

  7. Python yield 使用浅析(转)

    add by zhj: 说到yield,就要说说迭代器.生成器.生成器函数. 迭代器:其实就是一个可迭代对象,书上说迭代器,我个人不喜欢这个说法,有点晦涩.可迭代对象基本上可以认为是有__iter__ ...

  8. python yield 浅析-转载

    如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到.用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题 ...

  9. 转:Python yield 使用浅析

    初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yiel ...

随机推荐

  1. [GO]并行和并发的区别

    并行:指在同一时刻,有多条指令在多个处理器上同时执行 并发:指在同一时刻只能有一条指令执行,但多个进程指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只有把时 ...

  2. QT学习之常用类的总结

    QApplication 应用程序类 管理图形用户界面应用程序的控制流和主要设置       QPalate   QLabel 标签类 提供文本或者图像的显示   QPushButton 按钮类 提供 ...

  3. Spring框架总结(十二)

    问题引入:      程序的“事务控制”, 可以用aop实现! 即只需要写一次,运行时候动态植入到业务方法上. 一个业务的成功: 调用的service是执行成功的,意味着service中调用的所有的d ...

  4. Hibernate查询对象所有字段,单个字段 ,几个字段取值的问题

    HQL 是Hibernate Query Language的简写,即 hibernate 查询语言:HQL采用面向对象的查询方式.HQL查询提供了更加丰富的和灵活的查询特性,因此Hibernate将H ...

  5. winform 中TextBox只能输入数字

    textBox1.KeyPress+=TextNumber_KeyPress; private void TextNumber_KeyPress(object sender, KeyPressEven ...

  6. Java中的Type

    Type是Java 编程语言中所有类型的公共高级接口(官方解释),也就是Java中所有类型的“爹”:其中,“所有类型”的描述尤为值得关注.它并不是我们平常工作中经常使用的 int.String.Lis ...

  7. Python之set集合与collections系列

    1>set集合:是一个无序且不重复的元素集合:访问速度快,解决了重复的问题: s2 = set(["che","liu","haha" ...

  8. Vue.js的库,包,资源的列表大全。

    官方资源 外部资源 社区 播客 官方示例 入门 开发工具 语法高亮 代码片段 自动补全 组件集合 库和插件 路由 ajax/数据 状态管理 校验 UI组件 i18n 示例 模板 脚手架 整合 插件/指 ...

  9. 【C#】事件

    前言:CLR事件模式建立在委托的基础上,委托说调用回调方法的一种类型安全的方式. 我个人觉得事件本质就是委托,所以把委托弄清楚,只要知道事件基本语法就会使用了(如果说到线程安全,我个人觉得这个应该和线 ...

  10. Win8共享wifi热点设置

    Win8共享wifi热点如何设置?大家都知道win7系统可以实现wifi热点共享,那么win8应该也能实现wifi热点共享,那么如何设置win8不需要任何软件只需要对电脑进行设置就可以共享无线上网. ...