题目链接:

D. Powerful array

time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of productsKs·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

You should calculate the power of t given subarrays.

Input

First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

Next t lines contain two positive integers lr (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

Output

Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use%I64d).

Examples
input
3 2
1 2 1
1 2
1 3
output
3
6
input
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
output
20
20
20
Note

Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):

Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 32·1 + 22·2 + 12·3 = 20.

AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+;
int n,t;
long long a[N],num[N],ans[N];
struct node
{
/* friend bool operator< ()
{ }*/
int l,r,id,pos;
};
node qu[N];
int cmp(node x,node y)
{
if(x.pos==y.pos)return x.r<y.r;
return x.l<y.l;
}
void solve()
{
long long temp=;
int le=,ri=;
for(int i=;i<=t;i++)
{
while(ri<qu[i].r)
{
ri++;
temp+=((num[a[ri]]<<)+)*a[ri];
num[a[ri]]++;
}
while(ri>qu[i].r)
{
num[a[ri]]--;
temp-=((num[a[ri]]<<)+)*a[ri];
ri--;
}
while(le<qu[i].l)
{
num[a[le]]--;
temp-=((num[a[le]]<<)+)*a[le];
le++;
}
while(le>qu[i].l)
{
le--;
temp+=((num[a[le]]<<)+)*a[le];
num[a[le]]++;
}
ans[qu[i].id]=temp;
}
} int main()
{
scanf("%d%d",&n,&t);
for(int i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
}
int sq=sqrt(n);
for(int i=;i<=t;i++)
{
scanf("%d%d",&qu[i].l,&qu[i].r);
qu[i].id=i;
qu[i].pos=qu[i].l/sq;
}
sort(qu+,qu+t+,cmp);
solve();
for(int i=;i<=t;i++)
{
printf("%I64d\n",ans[i]);
}
return ;
}

codeforces 86D D. Powerful array(莫队算法)的更多相关文章

  1. CodeForces - 86D D. Powerful array —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/86/D D. Powerful array time limit per test 5 seconds m ...

  2. codeforces 86D,Powerful array 莫队

    传送门:https://codeforces.com/contest/86/problem/D 题意: 给你n个数,m次询问,每次询问问你在区间l,r内每个数字出现的次数的平方于当前这个数的乘积的和 ...

  3. D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力

    莫队算法就是优化的暴力算法.莫队算法是要把询问先按左端点属于的块排序,再按右端点排序.只是预先知道了所有的询问.可以合理的组织计算每个询问的顺序以此来降低复杂度. D. Powerful array ...

  4. [Codeforces86D]Powerful array(莫队算法)

    题意:定义K[x]为元素x在区间[l,r]内出现的次数,那么它的贡献为K[x]*K[x]*x 给定一个序列,以及一些区间询问,求每个区间的贡献 算是莫队算法膜版题,不带修改的 Code #includ ...

  5. Codeforces 86D - Powerful array(莫队算法)

    题目链接:http://codeforces.com/problemset/problem/86/D 题目大意:给定一个数组,每次询问一个区间[l,r],设cnt[i]为数字i在该区间内的出现次数,求 ...

  6. CodeForces 86 D Powerful array 莫队

    Powerful array 题意:求区间[l, r] 内的数的出现次数的平方 * 该数字. 题解:莫队离线操作, 然后加减位置的时候直接修改答案就好了. 这个题目中发现了一个很神奇的事情,本来数组开 ...

  7. codeforces 86D D. Powerful array

    An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, a ...

  8. CodeForces - 86D Powerful array (莫队)

    题意:查询的是区间内每个数出现次数的平方×该数值的和. 分析:虽然是道莫队裸体,但是姿势不对就会超时.答案可能爆int,所以要开long long 存答案.一开始的维护操作,我先在res里减掉了a[p ...

  9. Yandex.Algorithm 2011 Round 2 D. Powerful array 莫队

    题目链接:点击传送 D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input ...

随机推荐

  1. 从xhr说起

    原生xhr对象存在较多的兼容性,IE6及之前版本使用ActiveXObject对象来创建,IE7以后使用兼容版本的MSXML2.XMLHttp.MSXML2.XMLHttp3.0.MSXML2.XML ...

  2. lua面向对象铺垫

    Account = { balance = , withdraw = function(self, v) self.balance = self.balance - v end } --:操作符隐藏了 ...

  3. Command 'java' not found during running appium

    Question: When Execution code:driver = new RemoteWebDriver(new Uri("http://127.0.0.1:4723/wd/hu ...

  4. Delphi窗体研究,留个爪,以后回来研究

    Delphi - 窗体创建过程   来自大富翁. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...

  5. Asp.Net 5 Web Hook

    首先,然我们来看一下WebHooks是什么.WebHooks是一个协议.它们是HTTP回调技术.并且它们是"用户定义的HTTP回调".你和 (或) 您的应用程序在有什么事情发生时会 ...

  6. Bootstrap学习5--bootstrap中的模态框(modal,弹出层)

    bootstrap中的模态框(modal),不同于Tooltips,模态框以弹出对话框的形式出现,具有最小和最实用的功能集. 务必将模态框的 HTML 代码放在文档的最高层级内(也就是说,尽量作为 b ...

  7. crontab定时任务(待补充)

    cron是一个ubuntu下的后台进程,用来定期的执行一些任务 想让cron执行你指定的任务,首先就要编辑crontab文件.crontab是一个文本文件,用来存放你要运行的命令 第一种 vim /e ...

  8. Oracle数据库体系结构(7) 表空间管理1

    表空间是Oracle数据库最大的逻辑存储结构,有一系列段构成.Oracle数据库对象存储结构的管理主要是通过表空间的管理实现的. 1.表空间的分类 表空间根据存储类型不同分为系统表空间和非系统表空间 ...

  9. 如何阻止form表单中的button按钮提交

    <form action="#" method="post"> <input type="text" name=" ...

  10. Android蓝牙串口通讯【转】

    本文转载自:http://blog.sina.com.cn/s/blog_631e3f2601012ixi.html Android蓝牙串口通讯 闲着无聊玩起了Android蓝牙模块与单片机蓝牙模块的 ...