机器学习10—K-均值聚类学习笔记
机器学习实战之K-Means算法
test10.py
#-*- coding:utf-8 import sys
sys.path.append("kMeans.py") import kMeans
from numpy import * # datMat = mat(kMeans.loadDataSet('testSet.txt'))
# mindata = min(datMat[:, 0])
# print(mindata)
#
#
# ranCentK = kMeans.randCent(datMat, 2)
# print(ranCentK)
#
# dis = kMeans.distEclud(datMat[0], datMat[1])
# print(dis) # datMat3 = mat(kMeans.loadDataSet('testSet2.txt'))
# centList, myNewAssments = kMeans.biKmeans(datMat3, 3)
# print(centList) geoResults = kMeans.geoGrab('1 VA Center', 'Augusta, ME')
print(geoResults) res = geoResults['ResultSet']['Error']
print(res) print('over!!!')
kMeans.py
'''
Created on Feb 16, 2011
k Means Clustering for Ch10 of Machine Learning in Action
@author: Peter Harrington
'''
from numpy import * def loadDataSet(fileName): #general function to parse tab -delimited floats
dataMat = [] #assume last column is target value
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = list(map(float,curLine)) #map all elements to float()
dataMat.append(fltLine)
return dataMat def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB) def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print(centroids)
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0] #create a list with one centroid
for j in range(m):#calc initial Error
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print("sseSplit, and notSplit: ",sseSplit,sseNotSplit)
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print('the bestCentToSplit is: ',bestCentToSplit)
print('the len of bestClustAss is: ', len(bestClustAss))
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
return mat(centList), clusterAssment import urllib import json
def geoGrab(stAddress, city):
apiStem = 'http://where.yahooapis.com/geocode?' #create a dict and constants for the goecoder
params = {}
params['flags'] = 'J'#JSON return type
params['appid'] = 'aaa0VN6k'
params['location'] = '%s %s' % (stAddress, city)
url_params = urllib.parse.urlencode(params)
yahooApi = apiStem + url_params #print url_params
print(yahooApi)
c = urllib.request.urlopen(yahooApi)
return json.loads(c.read()) from time import sleep
def massPlaceFind(fileName):
fw = open('places.txt', 'w')
for line in open(fileName).readlines():
line = line.strip()
lineArr = line.split('\t')
retDict = geoGrab(lineArr[1], lineArr[2])
if retDict['ResultSet']['Error'] == 0:
lat = float(retDict['ResultSet']['Results'][0]['latitude'])
lng = float(retDict['ResultSet']['Results'][0]['longitude'])
print("%s\t%f\t%f" % (lineArr[0], lat, lng))
fw.write('%s\t%f\t%f\n' % (line, lat, lng))
else: print("error fetching")
sleep(1)
fw.close() def distSLC(vecA, vecB):#Spherical Law of Cosines
a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * cos(pi * (vecB[0,0]-vecA[0,0]) /180)
return arccos(a + b)*6371.0 #pi is imported with numpy import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
datList = []
for line in open('places.txt').readlines():
lineArr = line.split('\t')
datList.append([float(lineArr[4]), float(lineArr[3])])
datMat = mat(datList)
myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
fig = plt.figure()
rect=[0.1,0.1,0.8,0.8]
scatterMarkers=['s', 'o', '^', '', 'p', 'd', 'v', 'h', '>', '<']
axprops = dict(xticks=[], yticks=[])
ax0=fig.add_axes(rect, label='ax0', **axprops)
imgP = plt.imread('Portland.png')
ax0.imshow(imgP)
ax1=fig.add_axes(rect, label='ax1', frameon=False)
for i in range(numClust):
ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
plt.show()
机器学习10—K-均值聚类学习笔记的更多相关文章
- 机器学习实战---K均值聚类算法
		一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): ... 
- 机器学习之K均值聚类
		聚类的核心概念是相似度或距离,有很多相似度或距离的方法,比如欧式距离.马氏距离.相关系数.余弦定理.层次聚类和K均值聚类等 1. K均值聚类思想 K均值聚类的基本思想是,通过迭代的方法寻找K个 ... 
- 100天搞定机器学习|day44 k均值聚类数学推导与python实现
		[如何正确使用「K均值聚类」? 1.k均值聚类模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类.用C表示 ... 
- 机器学习2—K近邻算法学习笔记
		Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ... 
- 机器学习算法与Python实践之(六)二分k均值聚类
		http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http ... 
- 机器学习之路:python k均值聚类 KMeans 手写数字
		python3 学习使用api 使用了网上的数据集,我把他下载到了本地 可以到我的git中下载数据集: https://github.com/linyi0604/MachineLearning 代码: ... 
- 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
		k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ... 
- 探索sklearn | K均值聚类
		1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ... 
- 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测
		据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ... 
随机推荐
- android利用adb修改手机的分辨率和dpi
			在android开发过程中,适配更多的适配是必不可少的一步,而每次测试适配时,要么购买设配,要么模拟器,买设配太花钱,模拟器太占内存,不过幸好还可以通过修改手机的size(分辨率)和density来进 ... 
- Akka Cluster之集群分片
			一.介绍 当您需要在集群中的多个节点之间分配Actor,并希望能够使用其逻辑标识符与它们进行交互时,集群分片是非常有用的.你无需关心Actor在集群中的物理位置,因为这可能也会随着时间的推移而发生变 ... 
- Linux下进行Web服务器压力(并发)测试工具http_load、webbench、ab、Siege、autobench简单使用教程(转)
			一.http_load 程序非常小,解压后也不到100K http_load以并行复用的方式运行,用以测试web服务器的吞吐量与负载.但是它不同于大多数压力测试工 具,它可以以一个单一的进程运行,一般 ... 
- Linux文本过滤常用命令(转)
			01 cat命令 通常用来显示文本文件的内容 一般用来查看比较短的文本文件,因为其缓冲区有限 -s选项可以用来合并文件中多余的空行,多个空行将被压缩为一个空行; -n选项可以显示行号 -b选项可以跳过 ... 
- u-boot-2015.01在tq2440上的初步移植
			作者: 彭东林 邮箱: pengdonglin137@163.com QQ: 405728433 开发板: tq2440 工具: Win7 + VMware + Debian6 ... 
- JAVA常见算法题(二十二)
			package com.xiaowu.demo; //利用递归方法求5!. public class Demo22 { public static void main(String[] args) { ... 
- python 常用的模块(collections)转
			collections是Python内建的一个集合模块,提供了许多有用的集合类. namedtuple 我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成: >>> ... 
- django发送邮箱
			要用django发送邮箱之前需要在setting中配置一下 EMAIL_HOST = 'smtp.qq.com' EMAIL_PORT = 25 EMAIL_HOST_USER = 'xxx@qq.c ... 
- consist of,  made up of
			consist vi.由……组成:由……构成(常和介词of构成固定搭配)made up of由……组成[例如] One year consists of 365 days.一年有365天.The te ... 
- Git历险记(一)
			[编者按]作为分布式版本控制系统的重要代表——Git已经为越来越多的人所认识,它相对于我们熟悉的CVS.SVN甚至同时分布式控制系统的 Mercurial,有哪些优势和不足呢.这次InfoQ中文站有幸 ... 
