点此看题面

大致题意: 给你\(n\)个\(m\)位二进制数。每组询问给你一个\(m\)位二进制数,要求你从\(0\)开始,依次对于这\(n\)个数进行\(and\)或\(or\)操作,问有多少种方案能够得到给你的这个二进制数。

找规律

不难想到去对每一位分别讨论。

则根据位运算法则可得:

  • 当你把某一位的数\(and\ 0\),就相当于把这一位数赋值为\(0\)。
  • 当你把某一位的数\(or\ 1\),就相当于把这一位数赋值为\(1\)。
  • 当你把某一位的数\(and\ 1\)或者\(or\ 0\)时,这一位的值均不变。

则可以得出一个结论:

  • 若给定数这一位为\(0\),则对于这一位的运算中最后一次\(and\ 0\)要出现在最后一次\(or\ 1\)之后(或者两者都未出现)。
  • 若给定数这一位为\(1\),则对于这一位的运算中最后一次\(or\ 1\)要出现在最后一次\(and\ 0\)之后(注意\(or\ 1\)必须有,\(and\ 0\)可有可无)。

但这样依然不太好操作,所以我们要进行进一步转化。

转化

考虑把操作序列转化为一个二进制数,\(or\)为\(0\),\(and\)为\(1\),且较后操作处于较高位。

然后把题目中给出的\(n\)个长度为\(m\)的数变为\(m\)个长度为\(n\)的数,第\(i\)个数由初始的\(n\)个数的第\(i\)位组成,且编号较大的数处于较高位。

这样一来操作与数就可以一一对应了。

然后考虑如果对应位相等,表示该操作无影响。

而不相等那一位,若操作序列中的值为\(0\),数中的值为\(1\),即操作序列中这一位小于该数中的这一位,说明是赋值为\(1\),反之是赋值为\(0\)。

由于二进制下比大小看不相等的最高位,所以我们可以得出结论:

  • 若操作序列所表示的二进制数小于该数,则最终结果中该数所对应位上为\(1\)(不能等于是因为一定要有\(or\ 1\)操作)。
  • 若操作序列所表示的二进制数大于等于该数,则最终结果中该数所对应位上为\(0\)。

也就是说,一个符合条件的操作序列所表示的二进制数,要满足其小于所有应得位为\(1\)的数,大于等于所有应得位为\(0\)的数。

而这也就是要小于所有应得位为\(1\)的数的最小值,大于等于所有应得数为\(0\)的数的最大值。

则可以先将所有数排序,然后求出所有数取模后的值,然后对于询问从小到大找最大值,从大到小找最小值即可。

具体实现详见代码。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 1000
#define M 5000
#define X 1000000007
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,m,v[M+5],pw[M+5];
struct data
{
int p;string s;
I bool operator < (Con data& o) Con {return s<o.s;}
}s[M+5];
I int XSub(CI x,CI y) {return x<y?x-y+X:x-y;}
int main()
{
RI Qt,i,j,l,r;string st;for(scanf("%d%d%d",&n,&m,&Qt),i=1;i<=m;++i) s[i].p=i;//初始化
for(i=1;i<=n;++i) for(cin>>st,j=1;j<=m;++j) s[j].s=st[j-1]+s[j].s;//初始化出字符串
for(pw[0]=i=1;i<=n;++i) (pw[i]=pw[i-1]<<1)>=X&&(pw[i]-=X);v[m+1]=pw[n];//预处理2的幂
for(sort(s+1,s+m+1),i=1;i<=m;++i) {for(j=0;j^n;++j) s[i].s[j]^48&&Inc(v[i],pw[n-j-1]);}//排序,预处理出每个数的值
W(Qt--)
{
for(cin>>st,l=0,i=m;i;--i) if(st[s[i].p-1]^'1') {l=i;break;}//找最小值
for(r=m+1,i=1;i<=m;++i) if(st[s[i].p-1]^'0') {r=i;break;}//找最大值
printf("%d\n",l<=r?XSub(v[r],v[l]):0);//计算答案
}return 0;
}

【洛谷4424】[HNOI/AHOI2018] 寻宝游戏(位运算思维题)的更多相关文章

  1. [Bzoj5285][洛谷P4424][HNOI/AHOI2018]寻宝游戏(bitset)

    P4424 [HNOI/AHOI2018]寻宝游戏 某大学每年都会有一次Mystery Hunt的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生 ...

  2. 洛谷P4424 [HNOI/AHOI2018]寻宝游戏(思维题)

    题意 题目链接 Sol 神仙题Orz Orz zbq爆搜70.. 考虑"与"和"或"的性质 \(0 \& 0 = 0, 1 \& 0 = 0\) ...

  3. 【洛谷4424】[HNOI_AHOI2018]寻宝游戏(我也不知道括号里该写啥)

    题目 洛谷 4424 分析 感觉思路比较神仙. 对于按位与和按位或两种运算,显然每一位是独立的,可以分开考虑. 对于某一位,「与 \(0\)」会将这一位变成 \(0\),「或 \(1\)」会将这一位变 ...

  4. BZOJ5285 & 洛谷4424 & UOJ384:[HNOI/AHOI2018]寻宝游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 https://www.luogu.org/problemnew/show/P4424 ht ...

  5. [洛谷P4436] HNOI/AHOI2018 游戏

    问题描述 一次小G和小H在玩寻宝游戏,有n个房间排成一列,编号为1,2,...,n,相邻的房间之间都有一道门.其中一部分门上锁(因此需要有对应的钥匙才能开门),其余的门都能直接打开.现在小G告诉了小H ...

  6. 【洛谷P2114】起床困难综合征 位运算+贪心

    题目大意:给定 N 个操作,每个操作为按位与.或.异或一个固定的数字,现在要求从 0 到 M 中任选一个数字,使得依次经过 N 个操作后的值最大. 题解:位运算有一个重要的性质是:位运算时,无进位产生 ...

  7. 洛谷 P2114 [NOI2014]起床困难综合症 位运算

    题目描述 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作斗争.通过研究相关文献,他找到了该病的发病原因 ...

  8. NOI2014 洛谷P2114 起床困难综合征(位运算)

    呃...这道题算是noi中比较简单的题吧...... 众所周知,位运算是个好东西,它就是对应的位进行运算,跟其他的位没有关系. 我们要选取一个m值使最后的攻击力最大,对于这个m,从高位开始枚举,判断该 ...

  9. 洛谷P4438 [HNOI/AHOI2018]道路(dp)

    题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...

随机推荐

  1. 解决Navicat 连接服务器数据库报10060问题

    1.登录mysql,授予远程登录权限(确保mysql表里的登录user对应的host为 % 即可:若不是 % ,使用mysql的update更新对应host) mysql> use mysql; ...

  2. bzoj2502: 清理雪道(有源汇有上下界最小流)

    传送门 别说话,自己看,我不会->这里 我这里用的建图方法是先跑一次最大流,连上$(t,s,inf)$之后再跑一遍,然后答案就是之前连的那条边的反向边的流量 据说还有种方法是连上$(t,s,in ...

  3. MCP|ZCM|Investigating Lactococcus lactis MG1363 response to phage p2 infection at the proteome level(研究乳酸乳球菌MG1363在噬菌体p2感染后的蛋白质组水平变化)

    一.概述: 噬菌体是特异性感染并最终杀死其细菌宿主的病毒.他们在所有生态系统中发挥着关键的生态作用.尽管经过了几十年的研究,噬菌体与细菌宿主之间的相互作用仍然知之甚少.本研究使用无标记定量蛋白质组学来 ...

  4. jmeter - 录制app接口

    准备: 1.手机 2.wifi 3.Jmeter   步骤: 1.Jmeter->文件->Template    2.手机设置代理 端口:8888:电脑的ip,如下图设置 3.点击启动   ...

  5. 毕马威&阿里:通向智能制造的转型之路

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 2019 年 4 月 17 日,毕马威与阿里研究院携手举办了智能经济主题报告发布会,从技术.制造.组织 ...

  6. AT2382 A or...or B Problem

    传送门 还是看题解的啦 先考虑一个显而易见的结论:A和B二进制下最高的几位相同是没用的(设去掉的那些位之和为sum) 然后我们设\(d\)为二进制下从高位到低位第一位不相同的,\(k\)为B从高位到低 ...

  7. 剑指offer刷题记录

    目录 二维数组中的查找 替换空格 从尾到头打印链表 反转链表 重建二叉树 用两个栈实现队列 旋转数组的最小数字 斐波拉切数列 跳台阶 变态跳台阶 矩形覆盖 二进制中1的个数 数值的整次方 链表中倒数第 ...

  8. CentOS7.3下Zabbix3.5之邮件报警配置

    一.邮件客户端以及脚本相关配置 1.安装sendmail,一般操作系统默认安装了安装 yum install sendmail 启动 service sendmail start 设置开机启动 chk ...

  9. 剑指Offer——数组中出现次数超过一半的数字——一题多解

    看题目: 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. ...

  10. Bonetrousle HackerRank 数学 + 思维题

    https://www.hackerrank.com/contests/world-codesprint-6/challenges/bonetrousle 给定一个数n,和k个数,1--k这k个,要求 ...