http://acm.hdu.edu.cn/showproblem.php?pid=5780

BC #85 1005

思路:

首先原式化简:x​^gcd(a,b)​​−1

也就是求n内,(公约数是i的对数)*x^i-1的和,其中i为n内的两两最大公约数。那么问题可以转化成先预处理出i,再求和,注意O(n*300)=1,正常情况会卡常数。必须还要优化

由于 ans=∑s[d]∗(x^​d​​−1),记s[d]=最大公约数为d的对数

我们注意到求s[d] or (公约数是i的对数),也就是求n/i以内互质数的对数,显然用欧拉来做

s[d]=2*(phi[1]+phi[2]+...+phi[n/d])-1

注意到:d不同,但是n/d一样,也就是s[d]可能有多个相同,比如 10/6 10/7 10/8 10/9 10/10,所以求s[d]相同的项,我们可以用等比公式求和(快速幂+逆元 新知识)

所以我们只要找到每一段s[d]就可以 即 j=n/(n/i),j为最后一个相同s[d]的下标

 // #pragma comment(linker, "/STACK:102c000000,102c000000")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <sstream>
#include <string>
#include <algorithm>
#include <list>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdlib>
// #include <conio.h>
using namespace std;
#define pi acos(-1.0)
const int N = 1e6+;
const int MOD = 1e9+;
#define inf 0x7fffffff
typedef long long LL; void fre() { freopen("in.txt","r",stdin);}
inline int read(){int x=,f=;char ch=getchar();while(ch>''||ch<'') {if(ch=='-') f=-;ch=getchar();}while(ch>=''&&ch<='') { x=x*+ch-'';ch=getchar();}return x*f;} LL pow_m(LL x,LL n)
{
LL res=;
while(n>)
{
if(n & )
res=(res*x)%MOD;
x=(x*x)%MOD;
n >>= ;
}
return res;
} int prime[N],sphi[N];
int inv[N];
void e_fun(){
sphi[]=;
for(int i=;i<=N;i++){
if(!sphi[i]){
prime[++prime[]]=i;
sphi[i]=i-;
}
for(int j=;j<=prime[]&&i*prime[j]<=N;j++){
if(i%prime[j]) sphi[i*prime[j]]=sphi[i]*(prime[j]-);
else sphi[i*prime[j]]=sphi[i]*prime[j];
}
}
for(int i=;i<=N;i++) sphi[i]=(sphi[i-]+sphi[i])%MOD; //打表求逆元
// inv[1] = inv[0] = 1;
// for(int i = 2;i < N;i++)
// inv[i] = inv[MOD%i]*(MOD-MOD/i)%MOD;
} void ex_gcd(LL a,LL b,LL &d,LL &x,LL &y) {
if (!b) {
d = a;
x = ;
y = ;
}
else {
ex_gcd(b, a%b, d, y, x);
y -= x*(a/b);
}
// return x;
} LL sn(LL q,LL n){
if(q==) return n;
LL x,y,d;
ex_gcd(q-,MOD,d,x,y);
return (pow_m(q,n)-)*((x+MOD)%MOD)%MOD;
} int main(){
e_fun();
int T;
T=read();
while(T--){
int x,n;
x=read(),n=read();
LL ans=;
for(int i=,j;i<=n;i=j+){
j=n/(n/i);
LL sd=*sphi[n/i]-;
ans=(ans + sd*(pow_m(x,i)*sn(x,j-i+)%MOD -(j-i+))%MOD) % MOD;
}
printf("%I64d\n",ans);
}
return ;
}

HDU5780 gcd 欧拉函数的更多相关文章

  1. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  2. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  3. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  4. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  5. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

  6. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. import java.util.Scanner;

    一.扫描控制台输入     当通过new Scanner(System.in)创建一个Scanner,控制台会一直等待输入,,,,,,,直到敲回车键结束,把所输入的内容传给Scanner,作为扫描对象 ...

  2. 使用CXF暴露您的REST服务

    使用CXF暴露您的REST服务 REST应用服务器SpringBeanServlet  1.  前言 现在互联网Open API流行,将您的Web应用也可以开放Open API给其他第三方使用.达到一 ...

  3. 44. Wildcard Matching

    题目: Implement wildcard pattern matching with support for '?' and '*'. '?' Matches any single charact ...

  4. 浅析CDN安全

    目前CDN技术到处可见.像网宿.蓝讯.加速乐等都依靠CDN过活,连安全宝也都使用了CDN技术,当然很多域名空间商现在也提供CDN服务.从以往互联网的发展上看,CDN是个趋势,很多厂商也都多多少少购买了 ...

  5. TCP-心跳

    心跳包就是在客户端和服务器间定时通知对方自己状态的一个自己定义的命令字,按照一定的时间间隔发送,类似于心跳,所以叫做心跳包.   用来判断对方(设备,进程或其它网元)是否正常运行,采用定时发送简单的通 ...

  6. ProgressBar 示例及自定义样式

    在layout中使用ProgerssBar,其中使用了自定义的样式 <ProgressBar android:id="@+id/footer_refresh_prgs" st ...

  7. 【设计模式】—— 单例模式Singleton

    前言:[模式总览]——————————by xingoo 模式意图 保证类仅有一个实例,并且可以供应用程序全局使用.为了保证这一点,就需要这个类自己创建自己的对象,并且对外有公开的调用方法. 模式结构 ...

  8. n人比赛,可轮空,比赛轮数和场数

    #include<stdio.h> int chang(int x,int s){ ) return s; ) ; !=){ s+=(x-)/; )/,s); } else{ s+=x/; ...

  9. hdu 3433 A Task Process(dp+二分)

    题目链接 题意:n个人, 要完成a个x任务, b个y任务. 求,最短的时间 思路:由于时间较大,用 二分来找时间. dp[i][j]表示 i个人完成j个x任务, 最多能完成的y任务个数 这个题 不是很 ...

  10. 使用 google gson 转换Timestamp为JSON字符串

    package com.test.base; import java.lang.reflect.Type; import java.sql.Timestamp; import java.text.Da ...